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1 Conformal Field Theory

We recap the rudiments of conformal field theory, often forgotten by students yet omitted from seminars.

1.1 Conformal Symmetry

In d > 2 the conformal algebra is 1
2 (d + 1)(d + 2)-dimensional with generators pµ, Jµν , D and Kµ

generating translations

eia·pxe−ia·p = x− a (1.1)

rotations or boosts

eir·Jxe−ir·J = Lx with L ∈ SO(1, 3)+ (1.2)

dilatations

eicDxe−icD = e−cx (1.3)

and special conformal transformations

eiαK
x

x2
e−iαK =

x

x2
− α (1.4)

Aside from the usual Lorentz algebra commutators, we have in addition

[Jµν ,K
λ] = iδλ[µKν] , [Jµν , D] = 0 , [Pµ,Kν ] = −2iηµνD+2iJµν , [Pµ, D] = iPµ , [D,Kλ] = iKλ

(1.5)

In d = 2 the conformal algebra is infinite-dimensional with generators

Ln = −zn+1 ∂

∂z
(1.6)

for n ∈ Z. The commutation relations are

[Lm, Ln] = (m− n)Lm+n (1.7)

A conformal field theory is a quantum field theory whose quantum effective action is invariant under

conformal transformations. In d = 2 dilatation invariance suffices to guarantee conformal invariance, but

the analogous statement in generic dimension is as yet undecided.

In d = 2 conformal invariance as defined above is typically too strong a condition for interesting theories,

due to a generic Weyl anomaly. We thus extend the definition of conformal field theory to include the

case where the quantum effective action is invariant under Virasoro transformations, generated by the

Ln above and a central charge c such that

[c, Ln] = 0 and [Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0 (1.8)

A key observable in a scale invariant quantum field theory is the scaling dimension ∆ of an operator.

More precisely, scale invariance of the effective action is equivalent to vanishing of the β function, hence
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under dilatations a generic operator transforms as

eiλDO(x)e−iλD = λ−∆O(λx) (1.9)

where ∆ does not depend on the distance scale. In particular, the scaling dimensions fix the two-point

function up to some operator-dependent constant c12

〈O1(x1)O2(x2)〉 =
c12δ∆1−∆2,0

|x12|∆1+∆2
(1.10)

This observation (and its three-point cousin) forms the starting point for the fruitful conformal bootstrap

programme. In this line of work, it is common to come across quantities which depend on the difference

between scaling dimension and Lorentz spin. Accordingly, this quantity has been christened twist by

the community.

1.2 State-Operator Correspondence

In d = 2 we may use conformal symmetry to map the cylinder with coordinates (σ, τ) to the Riemann

sphere with coordinates (z, z̄) via z = eσ+iτ . Under this map time-ordering for correlation functions

becomes radial ordering; that is to say that the dilatation operator governs the evolution of the system.

Canonical quantization in this setting is known as radial quantization, for obvious reasons.

The true power of this perspective is to make manifest the fact that states and local operators are

in bijection in a d = 2 conformal field theory in a manner compatible with their appearance in correla-

tion functions1. To prove this it is easiest to work in the language of second quantisation, where states

Ψ are functionals of field configurations φb on circles around the origin. We may map from an operator

insertion in the far past to a state by performing a path integral with boundary condition φi = φb, viz.

Ψ[φb] =

∫
Dφie−S[φi]O(0) (1.11)

Conversely we define an operator O(0) corresponding to Ψ by taking the limit of a path integral over

progressively smaller circles with radius r and field configuration φc, viz.

O(0) = lim
r→0

∫
Dφcr−DΨ[φc] (1.12)

This constitutes the inverse of the previous equation since rD is precisely responsible for propagating

states from the circle |z| = r to the boundary.

For practical purposes this proof is rather cumbersome. In string theory, we typically require to con-

struct a so-called vertex operator corresponding to a state for use in heuristic perturbative formulae,

for which full derivations are not known owing to the complexity of string field theory. To obtain such

operators, we observe that the correspondence above preserves the transformation properties of states

1The state-operator correspondence is also valid in d > 2 but the construction is more subtle.
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of operators under the action of symmetries. In simple cases, it is then usually possible to bootstrap the

correct vertex operator.

First observe that vertex operators must be gauge invariant, i.e. unchanged under worldsheet repa-

rameterisation. The natural such objects are (1, 1) forms integrated over the worldsheet Σ, viz.

V =

∫
Σ

O dz ∧ dz̄ (1.13)

Suppose we want V to describe a tachyon of momentum k for a bosonic closed string. Then under a

spacetime translation X → X + a the operator must transform with weight eik·a. Moreover, it must be

a Lorentz scalar. We are thus naturally led to conjecture

Vtachyon =

∫
Σ

: eik·X : dz ∧ dz̄ (1.14)

More generally one must include an additional polynomial in Xµ and its derivatives which is a world-

sheet scalar and has the correct Lorentz index structure matching the spectrum most easily derived via

lightcone-gauge quantization.

1.3 Operator Product Expansion

It is conjectured that in any quantum field theory products of local operators at different points may be

expanded as a linear combination of operators at one of the points

A(x)B(y) =
∑
i

ci|x− y|iCi(y) (1.15)

where ci are non-universal coefficients. Some care is needed to interpret this statement. Firstly, we must

view the right-hand-side as an asymptotic series in |x− y|. Secondly, the expressions should be equated

in the sense of operator insertions within time-ordered correlation functions. These mathematical sub-

tleties place no great restrictions on the physics, however; after all, correlation functions encapsulate all

observable quantities, and we are well-used to dealing with asymptotic series from perturbation theory.

While the operator product expansion was first used to study the hadronic e+e− cross-section, it is

particularly powerful in d = 2 conformal field theory. In this case, the operator product expansion is

fully proven as a convergent series by virtue of the state-operator correspondence. Explicitly we find

A(z1, z̄1)B(z2, z̄2) =
∑
k

z
hk−hi−hj

12 z̄
h̄k−h̄i−h̄j

12 ciCi(z2, z̄2) (1.16)

where we assume wlog that A and B are eigenstates under the scaling z → λz, hence transforming like

A′(λz, λ̄z̄) = λ−hλ̄−h̄A(z, z̄) (1.17)

where (h, h̄) are independent quantities called conformal weights. It is not hard to derive that ∆ = h+h̄

and Lorentz spin is h− h̄, so that h̄ encodes the twist of the operator.
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For practical purposes we may determine parts of the OPE by using the Ward identities associated

with conformal symmetry. Indeed from the path integral approach to QFT we are familiar with identi-

ties such as

∂µ〈jµ(x)φa1(x1) . . . φan(xn)〉 = −i
n∑
j=1

〈φa1(x1) . . . δ(n)(x− xj)δφaj (xj) . . . φan(xn)〉 (1.18)

In d = 2 we can squeeze extra information out of such identities by integrating both sides over C∞ and

using Stokes’ theorem to convert to a contour integral. Now splitting the current as a sum of holomorphic

and antiholomorphic pieces yields

i

2π

∮
j(z)O(w, w̄) = δO(w, w̄) (1.19)

and similarly for j̄(z̄). In other words, the transformation of O(w, w̄) under a symmetry determines the

coefficient of the simple pole in (z − w) in its OPE with the conserved currents j(z) and j̄(z̄).

It is convenient to define a class of operators for which the conformal Ward identies determine the

singular behaviour of the OPEs completely. These are the primary operators, whose OPEs with the

energy-momentum tensor T (z, z̄) = T (z) + T̄ (z̄) have at worst a double pole. Examining the behaviour

of a generic operator O(w, w̄) under translations, rotations and scaling leads to

T (z)O(w, w̄) = h
O(w, w̄)

(z − w)2
+
∂wO(w, w̄)

(z − w)
+ . . . (1.20)

and similarly for T̄ (z̄). Primary operators are the basic building blocks of a d = 2 CFT, in the sense

that OPEs for any operators may be derived from OPEs for primary operators.

In string theory the operator product expansion has twofold significance. On the one hand it pro-

vides a convenient way to describe constraints on correlation functions from Ward identities. On the

other, it may be employed as a calculational tool to determine the normal ordered product of vertex

operators required for string amplitudes.
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2 Superstrings

Most young researchers have an intimate knowledge of the bosonic string. Most current research requires

an understanding of the superstring. Here we bridge the gap.

2.1 RNS Action

In bosonic string theory we generalise the action for a massless particle

S =
1

2

∫
dτ
(
e−1ẋµẋµ

)
(2.1)

where e(τ) is an auxiliary field, mathematically required for reparameterisation invariance

δξx
µ = ξẋµ , δξe = ∂τ (ξe) (2.2)

where ξ(τ) is a local infinitesimal parameter. The two-dimensional version of this is the Polyakov

action

S =
T

2

∫
d2σ

(√
hhαβ∂αX

µ∂βXµ

)
(2.3)

where now the metric hαβ is an auxiliary field (with determinant h), which can be completely fixed to

ηαβ by reparameterising the worldsheet

δξX
µ = ξα∂αX

µ , δξh
αβ = ξγ∂γh

αβ − ∂γξαhγβ − ∂γξβhαγ (2.4)

and applying a Weyl scaling

δΛX
µ = 0 , δΛh

αβ = Λhαβ (2.5)

To supersymmetrise this story, it is natural to begin with the action for a massless particle with spin

degrees of freedom, namely

S =
1

2

∫
dτ
(
e−1ẋ2 + ψµψ̇µ − e−1χψµẋµ

)
(2.6)

where ψµA is a D-plet of worldsheet Majorana spinors, and χA is a Majorana auxiliary field, necessary

for local supersymmetry. Indeed, it is an easy exercise to show invariance under the transformations

δεx
µ = εψµ , δεe = εχ , δεψ

µ = ε

(
1

2
χψµ − ẋµ

)
e−1 , δεχ = 2ε̇ (2.7)

where ε(τ) is a local infinitesimal parameter. This model was originally constructed to reproduce the

Dirac equation upon quantization, in the same way that (2.1) yields the Klein-Gordon equation. Hence

it is clear that (2.6) does not possess spacetime supersymmetry.

The two-dimensional version is the Brink-di Vecchia-Howe action2

S =
T

2

∫
d2σ det(e)

(
hαβ∂αX

µ∂βXµ − iψ̄µγα∂αψµ + 2χ̄αγ
βγαψµ∂βXµ +

1

2
(χ̄αγ

βγαχβ)(ψ̄µψµ)

)
(2.8)

2As usual for a Majorana spinor ψ̄ denotes ψTγ0.
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In addition to the auxiliary metric hαβ , we now have supergravity multiplet (eaα, χα) of Lagrange mul-

tipliers comprising a zweibein and two Majorana fermions. In particular the zweibein is responsible for

defining gamma matrices compatible with general covariance, via γα = γaeαa .

This is invariant under worldsheet reparameterisations, local supersymmetry transformations

δεX
µ = ε̄ψµ , δεψ

µ = i

(
∂αX

µ +
1

4
χ̄αψ

µ

)
γαε , δεe

a
α = −2iε̄γaχα , δεχα = Dαε (2.9)

and super-Weyl rescalings

Xµ → Xµ , ψµ → Λ−
1
2ψµ , eaα → Λeaα , χα → Λ

1
2χα + iγαλ (2.10)

where D is the covariant derivative of a spinor in two dimensions, λ is an arbitrary Majorana spinor and

εA is a Majorana spinor of Grassmann variables. The presence of so many auxiliary fields makes (2.8)

rather impractical. Fortunately one can gauge fix to obtain the much simpler Ramond-Neveu-Schwarz

action

S =
T

2

∫
d2σ

(
ηαβ∂αX

µ∂βX
ν − iψ̄µγα∂αψµ

)
(2.11)

looking like the free theory of a Nambu-Goto string and several Majorana fermions. The equations of

motion derived from (2.11) must still be supplemented with the constraints imposed by the Lagrange

multipliers (h, e, χ) to obtain the correct physical degrees of freedom.

It is highly non-trivial that (2.11) supplemented with gauge consistency conditions yields a spacetime

supersymmetric theory upon quantisation. To see this rigorously, it is easiest to start with an equiva-

lent action due to Green and Schwarz with manifest spacetime symmetry. More explicitly, one may use

residual gauge invariance to fix lightcone gauge3

X+(σ, τ) = x+ + p+τ , ψ+ = 0 (2.12)

and then perform a field redefinition, recasting the RNS action into GS form. The main drawback of the

GS approach is the difficulty of covariant quantisation due to the appearance of second-class constraints.

2.2 Boundary Conditions

To canonically quantise the string, we require the classical solutions for Xµ and ψµ. We must first derive

the equations of motion and boundary conditions by requiring a stationary action under variation of the

dynamical fields. For the bosonic part of (2.11) we find4

0 = 2πα′δS =

∫ τf

τi

dτ

∫ π

0

dσ ∂αX · ∂αδX

= −
∫
d2σ (∂α∂αX) · δX −

[∫ π

0

dσ Ẋ · δX
]τ=τf

τ=τi

+

[∫ τf

τi

dτ X ′ · δX
]σ=π

σ=0

(2.13)

3The spacetime lightcone coordinates are defined to be X± = 1√
2

(X0 ±XD−1).
4We employ the standard notation X′ = ∂σX and Ẋ = ∂τX.
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The bulk term yields the free wave equation(
∂2

∂σ2
− ∂2

∂τ2

)
Xµ = 0 (2.14)

with general solution5

Xµ(σ, τ) = Xµ
R(σ−) +Xµ

L(σ+) (2.15)

where the right-moving and left-moving excitations are independent arbitrary functions. The first bound-

ary term vanishes identically by requiring δX = 0 at τi and τf as usual for an action principle. The second

boundary term yields additional conditions, absent for point particles. These come in two topological

flavours, closed strings

Xµ|σ=0 = Xµ|σ=π (2.16)

and open strings

X ′µ|σ=0,π = 0 (Neumann) or Xµ|σ=0,π = cµ (Dirichlet) (2.17)

In the early days of string theory the Neumann boundary conditions were preferred for open strings since

they ensure that spacetime momentum6 doesn’t cross the σ = 0, π boundary of the worldsheet. Indeed,

we may verify this directly by considering the local transformation

Xµ(σα)→ Xµ(σα) + εµ(σα) (2.18)

yielding (via Noether’s trick) the momentum current

Pµα = T∂αX (2.19)

The momentum flowing across a line segment (0, dτ) or (π, dτ) at an open string endpoint is then

dPµ = dPµσ dτ = TX ′µ (2.20)

which exactly vanishes under Neumann boundary conditions.

Nowadays we also allow Dirichlet boundary conditions, intepreting the “lost” momentum as belong-

ing to some extended object fixed at cµ for whichever µ are Dirichlet. For this to make sense the string

must couple to the object in a consistent way, which places constraints on which combinations of Dirichlet

and Neumann conditions are allowed, or equivalently which extended objects are stable. We shall return

to this discussion in Section 3.

5The worldsheet lightcone coordinates are defined to be σ± = τ ± σ.
6We distinguish this from the worldsheet momentum, which cannot flow across the string boundary courtesy of Cardy’s

condition for CFTs with boundaries.
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The general solutions for closed strings may be written7

Xµ
R =

1

2
xµ +

1

2
σ−pµ +

i

2

∑
n6=0

1

n
αµne

−2inσ− (2.21)

Xµ
L =

1

2
xµ +

1

2
σ+pµ +

i

2

∑
n 6=0

1

n
α̃µne

−2inσ+

(2.22)

where αµn and α̃µn are independent oscillators. For open strings we find

Xµ
R =

1

2
xµ +

1

2
σ−pµ +

i

2

∑
n 6=0

1

n
αµne

−inσ− (2.23)

Xµ
L =

1

2
xµ +

1

2
σ+pµ +

i

2

∑
n6=0

1

n
α̃µne

−inσ+

(2.24)

where now the oscillator modes are not independent, rather

αµn = α̃µn (Neumann) , αµn = −α̃µn , xµ = cµ , pµ = 0 (Dirichlet) (2.25)

While much of this material may be familiar from a first course in string theory, we have presented it

in a manner which easily generalises to the RNS action (2.11). For clarity, we work in the basis of γ

matrices

γ0 =

0 −i

i 0

 , γ1 =

0 i

i 0

 (2.26)

and write ψµ in spinor components as

ψµ =

ψµ−
ψµ+

 (2.27)

Varying ψµ and requiring a stationary action yields

0 = 2iπα′δS =

∫ τf

τi

dτ

∫ π

0

dσ ψ̄µγα∂αδψµ (2.28)

= −
∫
d2σ ∂αψ̄

µγαδψµ +

[∫ π

0

dσ ψ̄µγ0δψµ

]τ=τf

τ=τi

+

[∫ τf

τi

dτ ψ̄µγ1δψµ

]σ=π

σ=0

(2.29)

The first term gives the (conjugate) Weyl equation in each spacetime component of ψµ, with general

solution

ψµ(σ, τ) =

ψ−(σ−)

ψ+(σ+)

 (2.30)

The second term vanishes by standard boundary conditions for action principles. The third term yields

the additional boundary condition

ψTγ0γ1 · δψ = 0 i.e. ψ+ · δψ+ − ψ− · δψ− = 0 (2.31)

at the endpoints σ = 0, π. As for the bosonic string, there are two classes of solutions, closed strings

ψ+|σ=0 = ±ψ+|σ=π , ψ−|σ=0 = ±ψ−|σ=π (2.32)

7Henceforth we use natural units in which
√
πT = 1. The reader may reinsert such factors by dimensional analysis.
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where the choice of ± is independent in ψ+ and ψ−, and open strings

ψ+|σ=0 = ψ−|σ=0 , ψ+|σ=π = ±ψ−|σ=π (2.33)

where we wlog fix the relative sign at one endpoint of the string.

We assign names to the boundary conditions according to which one of ± is chosen: Ramond (R)

boundary conditions have a + sign and Neveu-Schwarz (NS) have a − sign. Hence open superstrings

come in R or NS varieties, wheareas closed superstrings can be R-R, R-NS, NS-R or NS-NS.

Finally, we collect the general solutions for the fermionic components of the superstring. For closed

strings, we may write

2ψµ− =
∑
n∈Z

dµne
−2inσ− or

∑
r∈Z+1/2

bµr e
−2irσ−

ψµ+ =
∑
n∈Z

d̃ne
−2inσ+

or
∑

r∈Z+1/2

b̃µr e
−2irσ+

(2.34)

where (dn, d̃n) are associated with Ramond boundary conditions, while (br, b̃r) are associated with Neveu-

Schwarz boundary conditions. For open strings we have, employing analogous notation

ψµ− =
1√
2

∑
n∈Z

dµne
−inσ− or

1√
2

∑
r∈Z+1/2

bµr e
2irσ− (2.35)

ψµ+ =
1√
2

∑
n∈Z

dne
−inσ+

or
1√
2

∑
r∈Z+1/2

bµr e
−irσ+

(2.36)

2.3 Constraints

As argued in Section 2.1, it is not valid simply to solve the equation of motion following from the RNS

action (2.11). We must remember that this is the gauge fixed form of the Brink-di Vecchia-Howe action

(2.8), possessing Lagrange multipliers. These impose constraints which must be taken into account.

For the bosonic part of the action, the constraints are easy to derive. By Noether’s trick, recall that the

variation of the action upon changing the metric exactly yields the energy-momentum tensor Tαβ . The

reader may explicitly vary the metric in the Polyakov action to derive

Tαβ = ∂αX · ∂βX −
1

2
ηαβη

ρσ∂ρX · ∂σX (2.37)

in the gauge hαβ = ηαβ . The constraints are therefore just Tαβ = 0 for X on-shell, or in lightcone

coordinates

T++ = ∂+X · ∂+X = 0 , T−− = ∂−X · ∂−X = 0 (2.38)

with T+− = T−+ = 0 already automatic from the tracelessness of (2.37).
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We can pursue a similar programme for the Brink-di Vecchia-Howe action. By Noether’s trick, the

energy momentum tensor has non-zero components8

T++ = ∂+X · ∂+X +
i

2
ψ+ · ∂+ψ+ , T−− = ∂−X · ∂−X +

i

2
ψ− · ∂−ψ− (2.39)

and as above, varying h implies the constraint T++ = T−− = 0. We may similarly derive the nonzero

components of the conserved current associated to global supersymmetry9

J++ = ψ+ · ∂+X , J−− = ψ− · ∂−X (2.40)

It is an elementary exercise to show that the Lagrange multipliers (e, χ) lead to the constraint equations

J++ = J−− = 0, as we might have guessed.

It will be convenient to express the energy-momentum constraints as the vanishing of the Virasoro

modes10 obtained as the Fourier components of T−− and T++. For open strings we define

Lm =
1

π

∫ π

0

(
e2imσT++ + e−2imσT−−

)
dσ = 0 (2.41)

or in terms of oscillator modes11,

LNS
m =

1

2

∞∑
n=−∞

αm−n · αn +
1

2

∞∑
r=−∞

(
r +

1

2
m

)
b−r · bm+r = 0 (2.42)

LR
m =

1

2

∞∑
n=−∞

αm−n · αn +
1

2

∞∑
n=−∞

(
n+

1

2
m

)
d−n · dm+n = 0 (2.43)

Closed strings have additional sets of constraints for the α̃ modes. Observe that we have imposed the

constraints at τ = 0 without loss of information since Tαβ is a conserved current.

The L0 = 0 constraint is particularly important, since it determines the mass of the string in terms

of its internal modes of oscillation. Indeed defining M2 = −pµpµ we find, courtesy of footnote 11,

M2 =
1

α′

( ∞∑
n=1

α−n · αn +

∞∑
n=1

nd−n · dn

)
(2.44)

for open Ramond strings, with similar formulae in other sectors.

2.4 Quantisation and Spectrum

We will now quantize the RNS string in the lightcone gauge (2.12). This fixes all the gauge symmetry

of the RNS action (2.11) at the expense of manifest Lorentz covariance. The advantage of this approach

8Strictly speaking the following expressions are valid in the gauge that produces the RNS action.
9Recall that the supersymmetry parameter is a Majorana spinor of Grassmann variables with components εA. Hence the

current has components JαA. We may write α = ± courtesy of lightcone coordinates and A = ± analogously to (2.27).
10It is no coincidence that the notation in (2.41) agrees with (1.6) – indeed, the Virasoro modes precisely generate worldsheet

reparameterisations in the Poisson bracket sense.
11We adopt the useful convention αµ0 = α̃µ0 = 1

2
pµ for closed strings, and αµ0 = pµ for open strings.
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is that we may solve the constraints (2.38) completely, so the spectrum contains no ghosts and we may

immediately read off the physical states.

The first step in canonical quantisation is to impose the equal-time (anti)commutation relations

[Xµ(σ, τ), Pν(σ′, τ)] = iδ(σ − σ′)δµν

{ψµA(σ, τ), ψBν(σ′, τ)} = πδ(σ − σ′)δµν δAB
(2.45)

which immediately imply for the Fourier modes

[αµm, αnν ] = mδm+nδ
µ
ν

[α̃µm, α̃nν ] = mδm+nδ
µ
ν

{bµr , bsµ} = δµν δr+s

{dµm, dnν} = δµν δm+n

(2.46)

By comparison with point-particle quantum field theory, we may immediately identify αm, α̃m, br, dm as

raising operators for m, r > 0 and lowering operators for m, r < 0.

When translating fields into operators via canonical quantisation, one occasionally encounters oper-

ator ordering ambiguities, which must be fixed by some consistency condition. For instance, the

Hamiltonian of a quantum field theory is usually taken to be normal ordered, with the (partial) justifi-

cation that only differences in energy are measurable.

We encounter just such an ambiguity when promoting L0 to an operator, since the oscillators appear-

ing therein have non-trivial commutation relations. To resolve this we define L0 by requiring it to be

implicitly normal ordered, and then include an arbitrary constant in the related constraint

(L0 − a)|φ〉 = 0 (2.47)

In particular the mass formula (2.44) gains a constant shift at the quantum level. In principle a is

different in the Ramond and Neveu-Schwarz sectors.

In lightcone gauge the constraints (2.39) and (2.40) reduce to12

∂+X
−
L =

1

p+

(
∂+X

i
L∂+X

i
L +

i

2
ψi+∂+ψ

i
+

)
(2.48)

ψ−+ =
2

p+
ψi+∂+X

i
L (2.49)

and analogous equations with replacements +→ − and L→ R in the lower indices. Hence we can solve

for X− and ψ− up to a constant. In particular, one can show that α−0 and d−0 have normal ordering

12The index i = 1, . . . D − 2 ranges over the so-called transverse coordinates of the string. This moniker is customary yet

misleading, given that the string doesn’t necessarily live in the X0–XD−1 plane.
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ambiguities, resulting in the appearance of the constant a as in (2.47). All the dynamics now resides in

the transverse oscillators αim, α̃
i
m, b

i
r, d

i
m.

Before we can determine the mass spectrum of the RNS superstring, we must fix the operator ordering

ambiguity a. This emerges from requiring quantum consistency of the theory. More precisely, fixing X+

and ψ+ and solving for X− and ψ− breaks manifest Lorentz symmetry. Carefully defining the spacetime

Lorentz generators Jµν in terms of superstring modes and requiring that [J i−, Jj−] = 0 enforces

D = 10 , aNS =
1

2
, aR = 0 (2.50)

In covariant path integral quantisation, these values emerge from requiring that the conformal gauge

symmetry of the worldsheet remains unbroken at the quantum level.

We are now well-placed to determine the lightest states in the superstring spectrum. Of course, we

must first identify the ground states for each type of superstring.

For a Neveu-Schwarz open string we define |0; k〉NS by

αin|0; k〉NS = bir|0; k〉NS = 0 for n, r > 0 , αi0|0; k〉NS =
√

2α′ki|0; k〉NS (2.51)

which is clearly a state of lowest mass13, by virtue of the quantum version of (2.44) in the NS sector and

lightcone gauge, namely

M2 =
1

α′

 ∞∑
n=1

αi−nα
i
n +

∞∑
r=1/2

rbi−rb
i
r −

1

2

 (2.52)

Since |0; k〉NS carries momentum and has no Lorentz indices, it is clearly a spacetime scalar particle,

with mass-squared −1/(2α′). Alas! This state is therefore tachyonic, just as in the bosonic string. For-

tunately we shall shortly see that it must be excised from the spectrum in a well-defined manner for

a consistent interacting theory. The first excited state is b−1/2|0; k〉NS a spacetime vector gauge boson

with mass-squared 0, consistent with Lorentz symmetry. More generally, one may easily observe that all

states of the Neveu-Schwarz open string will be bosonic.

In the Ramond sector we have ground state

αin|0; k〉aR = dnr |0; k〉aR = 0 for n > 0 , αi0|0; k〉aR =
√

2α′ki|0; k〉aR (2.53)

where we have suggestively included a spinor index a. Indeed this is required because the di0 modes

commute with the Ramond sector mass-squared operator, which is precisely (2.44). The di0 modes have

anticommutation relations {di0, d
j
0} = ηij , so our states at every mass level must furnish representations

of the Clifford algebra. In particular, the ground state must be an irreducible representation, since there

13And therefore lowest energy for k = 0.
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are no other zero-modes that would cause any degeneracy.

Therefore the ground state is a spinor of SO(1, 9) with mass-squared 0. The first excited states are

αi−1|0; k〉R and di−1|0; k〉R, spin 3/2 gauginos with mass-squared 1/α′. More generally, all states of the

Ramond open string will be fermionic.

In fact, this isn’t the full story of the open superstring spectrum. Loop-level consistency of the in-

teracting theory disallows some states. More explicitly, modular invariance of the string worldsheet,

trivial at genus 0 but required for tori, enforces a Gliozzi-Scherk-Olive projection. For example, in

the open NS sector define an operator

GNS = (−1)
∑∞

r=1/2 b
i
−rb

i
r+1 (2.54)

The GSO projection is defined to eliminate all states with an eigenvalue of −1 under the action of GNS.

In particular the tachyon |0; k〉NS is removed, and the ground state of the open NS string becomes a

gauge boson bi−1/2|0; k〉NS. One may define a similar operator in the Ramond sector, namely

GR = Γ11(−1)
∑∞

n=1 d
i
−nd

i
n (2.55)

where Γ11 = Γ0 . . .Γ9 is the ten-dimensional version of the familiar γ5 matrix in four dimensions. Since

the Ramond sector does not contain a tachyon, it is not obvious whether we should project onto states

GR eigenvalue +1 or −1. It turns out that modular invariance is valid for either alternative, so the

selection is simply a matter of convention. We index our choice by considering the action of GR on the

ground state gaugino, deducing that it must have definite (positive or negative) chirality.

Now we are ready to define our first brand of superstring theory – that of open R and NS strings with

Neumann boundary conditions and GSO projected states. This is known as Type I superstring theory14.

Aside from eliminating the tachyon, the GSO projection suffices to provide a spectrum with the same

number of fermionic and bosonic degrees of freedom at each mass level. This is strong evidence for

spacetime supersymmetry, which indeed one obtains manifestly by quantising the Green-Schwarz action

equivalent to (2.11). The resulting spacetime supersymmetry for Type I string theory is N = 1 in

D = 10, motivating the nomenclature15.

It only remains to consider the spectrum of closed superstrings. As observed in (2.21) and (2.34),

they have twice the mode content of open strings, possessing independent left-moving (σ+) and right-

moving (σ−) oscillations. Although the choice of ground state chirality in the Ramond sector for each

14Note that this necessarily also contains closed string states, by virtue of loops. On a more technical note, the open strings

are in fact unoriented, and must possess SO(32) Chan-Paton factors at each end for the cancellation of gauge anomalies.

The calculation proving this fact launched the first superstring revolution.
15We presaged this above by calling the NS ground state a gauge boson, and the R ground state a gaugino.
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set of modes is arbitrary, the relative sign between the modes is physically meaningful. This leads to two

different brands of closed string theories.

In Type IIA string theory the left-moving and right-moving Ramond sector ground states are cho-

sen to have opposite chiralities. After GSO projection the ground states are massless, and are given

by

|−〉R ⊗ |+〉R , b̃i−1/2|0〉NS ⊗ bj−1/2|0〉NS , b̃i−1/2|0〉NS ⊗ |+〉R , |−〉R ⊗ bi−1/2|0〉NS (2.56)

In Type IIB string theory the left-moving and right-moving Ramond sector ground states are chosen to

have the same chirality. After GSO projection the ground states are again massless, and obtained from

(2.56) by taking |−〉R → |+〉R. In the Green-Schwarz formalism one can show that the Type II string

theories possess N = 2 spacetime supersymmetry in D = 10.

Originally it was thought that the Type II string theories do not contain any open strings, since open

strings possess a different amount of supersymmetry, so cannot couple consistently to the closed strings.

However, we’ll see in Section 3 that one may augment superstring theories with extended objects, to

which open strings may couple, circumventing this argument.

We finish by summarising the massless field16 content in each of the superstring theories we’ve en-

countered17.

Type I

N = 1 supergravity multiplet – graviton (35 NS-NS), two-form (28 NS-NS), dilaton (1 NS-NS), gravitino

(56 NS-R), dilatino (8 NS-R).

N = 1 super-Yang-Mills multiplet – vector (8 NS), gaugino (8 R).

Type II

N = 2 supergravity multiplet – graviton (35 NS-NS), two-form (28 NS-NS), dilaton (1 NS-NS), gravitino

(56 R-NS, 56 NS-R), dilatino (8 R-NS, 8 NS-R), vector (8 R-R, IIA only), three-form (56 R-R, IIA only),

scalar (1 R-R, IIB only), two-form (28 R-R, IIB only), four-form (35 R-R, IIB only).

Note that in D = 10 the little group for massless representations is SO(8), so it is most convenient to

label the irreducible representations by their dimensions, rather than by Casimirs. By comparison the

little group in D = 4 is SO(2), so we label particles by the single Casimir, helicity.

16We have only first quantised the superstring, but in principle should view the excitations as fields ripe for second

quantisation.
17In addition to the Type I, Type IIA and Type IIB theories, two other consistent superstring theories are known. These

are the heterotic theories – closed string theories with N = 1 spacetime supersymmetry where the right-movers come

from 10-dimensional superstring theory and the left-movers come from 26-dimensional bosonic string theory. A full

construction of such theories is beyond the scope of this review.
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3 Duality

Much progress in string theory has been from the perspective of low energy effective actions. These

naturally lead to identification of branes, natural objects on which gauge theories live. What’s more, the

effective approach provides a safe playground for the introduction of dualities. None is more influential

than the AdS/CFT correspondence, which has become ubiquitous in modern theoretical physics. Many

early career researchers encounter complicated brane constructions and holographic arguments, often

without sufficient contextual information. Here, we collect some background arguments to fill the void.

3.1 Branes in M-Theory

Supergravity is a collection of massless theories with local supersymmetry and particle content with

highest spin18 2. There are no supergravity theories with D > 11, since the smallest supermultiplet

would necessarily contain higher spin fields. In fact, the D = 11 theory is unique up to normalization

conventions, and hence known as maximal supergravity. The field content is relatively simple, viz.19

gµν (graviton, 44) , Ψa
µ (gravitino, 128) , Cµνρ (gauge field, 84) (3.1)

where we have explicitly stated the number of physical degrees of freedom for each field. The gauge

transformations for C(3) are defined as20

C(3) → C(3) + dΛ(2) (3.2)

for Λ(2) arbitrary. The requirements of gauge invariance, general coordinate covariance, local Lorentz

invariance and local supersymmetry determine the action to be

16πG11S = Sbosonic + Sfermionic (3.3)

Sbosonic =

∫
d11x
√
−gR− 1

2

∫
F(4) ∧ (∗F )(7) −

1

6

∫
C(3) ∧ F(4) ∧ F(4) (3.4)

Sfermionic =

∫
d11x

[
1

2
ΨµΓµνρDνΨρ −

1

192

(
ΨµΓµνρλστΨτ + 12Ψ

ν
ΓρλΨσ

)(
F + F̂

)
νρλσ

]
(3.5)

where G11 is Newton’s constant, R is the Ricci scalar, F(4) = dC(3) is the gauge field strength, Dν is the

gravity covariant derivative, Γµ...ν is the antisymmetrised product of gamma matrices, and F̂(4) is the

supercovariant gauge field strength21. The bosonic action comprises an Einstein-Hilbert term, a kinetic

term and a Chern-Simons term22.
18The definition of spin is subtle in D = 11. In particular, a generic massless representation of the little group is labelled

by the eigenvalue of more than one Casimir. Colloquially, we say that a symmetric spinor representation with n indices

has spin n/2. To be rigorous, we require a supergravity theory to possess no higher spin fields after compactification on

a torus to D = 4.
19We employ spacetime indices µ, ν, · · · = 0, . . . 10 and Majorana spinor indices a, b, · · · = 1, . . . 32.
20When referring to forms in index-free notation, we use a bracketed subscript to denote the rank of the form.
21A supercovariant quantity is one whose SUSY transformation does not contain any derivatives of the SUSY parameter.

We can construct such a quantity from F(4) by adding a term quadratic in gravitinos.
22An action built from Chern-Simons terms would lead to correlation functions with no metric dependence, hence only

sensitive to topological data. The converse is not true – there exist topological QFTs not built from Chern-Simons terms.
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The first port-of-call when considering any new theory is to determine its classical solutions. To make

this problem tractable, we consider only the bosonic part of the action. In fact, one can show that this is

a consistent truncation, in the sense that all solutions of the truncated theory are also solutions of the

full theory. To further simplify matters, we seek solutions with Poincaré invariance in p+ 1 dimensions

and SO(11− p− 1) invariance in the transverse dimensions. The simplest metric ansatz respecting such

a symmetry is

ds2 = e2α(r)dxMdxNηMN + e2β(r)dxmdxnδmn (3.6)

where r is the radial coordinate in the transverse space. We denote worldvolume23 coordinates by capital

letters M,N = 0, . . . p and transverse coordinate by lowercase letters m,n = p+ 1, . . . 11. For the gauge

field there are two obvious choices. First, assume the gauge field couples only to the worldvolume, in

which case p = 2 and we may choose

CMNR = εMNRγ(r) , FMNRa = εMNR∂aγ(r) (3.7)

Second, observe that the bosonic action has an electric-magnetic dual24 obtained by sending F(4) →

(∗F )(7) where ∗ is the Hodge star. So the analogue of (3.7) in the dual theory has p = 5 and

C̃MNRST = γ̃(r)εMNRST (3.8)

We can use the duality mapping to express C̃ in terms of the original theory, whence we find a field

strength coupling only to the transverse directions

Fabcd = (
√
−g)−1εabcde∂

eγ̃(r) (3.9)

We refer to (3.7) as the electric solution and (3.9) as the magnetic solution, since the former has nonzero

conserved charge

e =

∫
∂M8

(
(∗F )(7) +

1

2
C(3) ∧ F(4)

)
(3.10)

analogously to a Maxwell electic monopole, while the latter has nonzero conserved charge

µ =

∫
∂M̃5

F(4) (3.11)

analogously to a Maxwell magnetic monopole, whereM8 is parameterised by the transverse coordinates

in the original theory and M̃5 is parameterised by the transverse coordinates in the dual theory.

For appropriate choices of α(r), β(r), γ(r), γ̃(r) one can prove that the ansätze not only satisfy the

bosonic supergravity equations of motion, but are also invariant under half the supersymmetry. This

implies25 that they satify a BPS bound – after quantization they represent the lightest states with

23The reason for this nomenclature will become apparent when we define p-branes later.
24A dual theory is a mathematically distinct yet physically equivalent description of reality.
25See any introductory text on supersymmetry for the link between supersymmetric and BPS solutions.
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given quantum numbers. As such we expect these solutions to yield stable quantum-mechanical objects,

as decay is energetically forbidden.

We have thus constructed two stable supersymmetric extended solutions of supergravity. We might

hope to view these as the low-energy, classical approximations of higher-dimensional generalisations of

the superstring. With this interpretation in mind, we define a general p-brane to be a quantum extended

object obtained from some supersymmetric generalisation of the Dirac action26

S = −Tp
∫
dp+1ξ

√
−det (hαβ) (3.12)

where hαβ = ∂αX
µ∂βX

νηµν is the induced metric. With this definition, it can be shown that the electric

and dual magnetic solutions above emerge from the low energy limit of M2- and M5-branes. The putative

quantum theory with M2- and M5-branes as fundamental objects was given the moniker M-theory by

Edward Witten, where M is deliberately ambiguous, hence the names. The supergravity action (3.3) is

expected to be the low energy effective action of M-theory.

One could imagine having Mp-branes for p 6= 2, 5 also. However, these objects are likely to be un-

stable27. Firstly, they don’t correspond to BPS solutions of supergravity. Secondly, generalising our

experience with M2- and M5- branes, we expect that an Mp-brane will couple to a (p + 1)-form gauge

theory in spacetime. But such fields don’t appear in the maximal supergravity action unless p = 2 or

p = 5.

It is worth emphasising that one can view p-branes from two perspectives. For aficionados of super-

gravity, branes are solitonic28 solutions of the equations of motion acting as sources for gauge fields and

curvature in spacetime. Often the resulting spacetime is geodesically incomplete, with properties analo-

gous to a Reissner-Nordström black hole, hence the term black brane29. From a M-theory perspective,

a p-brane is a dynamical object in its own right, coupling to the background fields of supergravity in a

low-energy probe30 approximation.

3.2 Branes in Superstring Theory

Supergravity theories in 10 dimensions come in three types, according to the variety of supersymmetry

they possess. These are referred to as Type I, Type IIA and Type IIB supergravity, prefiguring a con-

nection to superstrings. They possess (1, 0), (1, 1) and (2, 0) supersymmetry respectively, where we have

26In the next section, we’ll encounter D-branes supporting gauge fields on their worldvolume. To incorporate this, one

generalizes (3.12) by including a gauge field strength Fαβ in the deteminant, defining the DBI action.
27The arguments for instability aren’t completely watertight – M-theory also possesses stable W0, KK7 and KK9 branes,

where W stands for wave and KK for Kaluza-Klein.
28A soliton is a particle-like solution, in the sense that the non-zero field values are localized in spacetime, though not

necessarily to 0 dimensions.
29The electric BPS brane above is black, but remarkably its magnetic dual is not!
30A probe brane is one which has no backreaction on the background fields.
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explicitly indicated the chirality of the chosen generators31.

A simple way of deriving the field content and Lagrangian for Type IIA supergravity is by perform-

ing a dimensional reduction of 11-dimensional maximal supergravity. The procedure is as follows:

take the x10 dimension to be a circle of radius R, Fourier expand the fields on the circle and discard the

non-zero modes. This is to be contrasted with Kaluza-Klein compactification in which all modes are

kept.

We illustrate the procedure in the bosonic sector. The 11-dimensional metric takes the form32

GMN = e−2φ/3

gµν + e2φAµAν e2φAµ

e2φAν e2φ

 (3.13)

and so contains a scalar dilaton field φ, 10-dimensional metric g, and abelian vector gauge field A(1) with

corresponding field strength F(2). Meanwhile, the 11-dimensional 3-form yields

C(11)
µνρ = Cµνρ , C

(11)
µν11 = Bµν (3.14)

namely a 3-form field C(3) and a 2-form field B(2), with corresponding field strengths F(4) and H(3).

After substituting these definitions in (3.4) and integrating out the circular coordinate x10 we obtain the

bosonic part of the Type IIA supergravity action

16πG10Sbosonic = SNS + SR + SCS (3.15)

SNS =

∫
d10x e−2φ√−g

(
R+ 4∂µφ∂

µφ− 1

2
|H(3)|2

)
(3.16)

SR = −1

2

∫
d10x
√
−g
(
|F(2)|2 + |F̃(4)|2

)
(3.17)

SCS = −1

2

∫
B(2) ∧ F(4) ∧ F(4) (3.18)

where F̃(4) = dC(3) − A(1) ∧ H(3). We have suggestively split the action above into Ramond, Neveu-

Schwarz and Chern-Simons pieces. Indeed we may identify the dynamical fields φ, g,B(2) appearing in

SNS with the NS-NS sector dilaton, graviton and two-form in the massless spectrum of Type II super-

strings. Similarly SR contains the vector A(1) and three-form C(3) comprising the massless states in the

R-R sector of Type IIA superstrings. In fact one can prove that in the low energy α′ → 0 limit, the

effective action of Type IIA superstring theory is precisely Type IIA supergravity33.

Moreover, by a short series of calculations relating G10, G11, gs, α
′ and 11-dimensional Planck length,

31In D = 2 (mod 4) representations of the Lorentz algebra admit spinors which are simultaneously Majorana and Weyl,

so one may define chiral supersymmetry generators.
32We use indices M,N = 0, 1, . . . 10 and µ, ν = 0, 1, . . . 9.
33To derive this, start by expanding around a constant classical field configuration à la Xµ(σ, τ) = x̄µ +

√
α′Y µ(σ, τ),

where α′ appears for dimensional reasons. Strictly speaking the dimensionless expansion parameter should be
√
α′/r

where r is the radius of curvature of the background spacetime.
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we may derive that the radius of the x10 circle determines the string coupling via

gs =
R√
α′

(3.19)

We might therefore suppose that M -theory reduces to Type IIA superstring theory upon applying dimen-

sional reduction. This conjecture allows us to instantly determine the stable p-branes. Indeed depending

on whether an M2- or M5-brane wraps the compact direction, we obtain p-branes with p = 1, 2, 4, 5. We

may catalogue these objects by considering the background form fields to which they couple.

In the previous section we saw that a p-brane naturally couples to an (p + 1)-form field, just as a

particle couples to the electromagnetic field in D = 4. We immediately deduce that the brane with p = 1

couples to the NS-NS two-form B(2), motivating the terminology NS1-brane. Of course, this object is

already familiar – it is nothing but the fundamental superstring! Clearly the R-R and NS-NS sectors are

preserved under electric-magnetic duality, so we identify the p = 5 case as an NS5-brane. Similarly the

p = 2 and p = 4 branes are electric-magnetic duals, and they couple to the R-R sector form fields C(3)

and (∗C)(5) respectively. We refer to them as D2- and D4-branes.

Pushing the coupling paradigm further, we are led to define branes coupling to the R-R sector fields

A(1) and (∗A)(7). According to the nomenclature defined above, we should refer to these as D0- and

D6-branes. Their M-theory origin is from the slightly obscure W0 and KK7 branes mentioned in foot-

note 27. By this logic we should also gain a D8-brane from the M-theory KK9-brane. This couples to

an RR 9-form which may be consistently included in Type IIA supergravity, defining Romans massive

supergravity34. The corresponding 10-form field strength does not have any propagating degrees of free-

dom but does carry energy density, so is appealing for cosmological constant phenomenology.

It is time to explain our mysterious decision to label the branes coupling to Ramond-Ramond fields

by the letter D. We define a Dp-brane to be the object on which an open string ends when equipped

with p + 1 Dirichlet boundary conditions (2.17). In Section 2.2 we argued that such objects must be

dynamical, because momentum is transferred off the end of the open string. In fact, we may identify the

stable D-branes as exactly the objects which couple to RR-sector background fields.

Polchinski’s famous argument35 goes as follows. Let us calculate the scattering amplitude A between

two Dp-branes. By definition, this is given at leading order in gs by a 1-loop vacuum graph of open

strings, which may be explicitly evaluated. But open-closed string duality tells us that A is equiv-

alently determined by the exchange of a single closed string between the branes. Moreover, there is a

well-defined prescription for extracting from A the contribution from the RR-sector of closed strings.

34There is no known direct derivation of Romans supergravity from 11-dimensional supergravity.
35To a great extent this kickstarted the second superstring revolution of the mid-1990s.
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Taking a low-energy limit, we find

− Vp+12π(4π2α′)3−pG9−p (3.20)

where Vp+1 is the volume of the brane and G9−p is the scalar propagator in 9−p dimensions. Amazingly,

this is also the amplitude for the exchange of a Ramond-Ramond (p+ 1)-form field between the branes,

proving that D-branes must naturally couple to the RR-sector.

The dynamics of a D-brane36 are determined by the excitations of open strings with the Dirichlet

boundary conditions. More explicitly, the massless bosonic spectrum of an open string with Dirichlet

conditions for a = 0, . . . p and Neumann for I = p+ 1, . . . D contains scalar fields φI governing the trans-

verse oscillation of the brane, and an abelian gauge field Aa living on the worldvolume of the brane. We

may construct a U(N) non-abelian gauge theory as the field theory carried by a stack of N coincident

D-branes. This observation underpins both braneworld phenomenology and the AdS/CFT correspon-

dence described in Section 3.3.

The open string definition of Dp-branes provides another derivation of the values of p for which they

are stable. Recall that we must perform a GSO projection to remove tachyons from superstring theory.

Given a choice of closed string projection (Type IIA or Type IIB) we may obtain a consistency condition

on open string projection via open-closed string duality. This restricts the possible values of p for which

a Dp-brane is stable to p even for Type IIA and p odd for Type IIB superstring theory.

At first glance, the difference in GSO projection and D-brane stability between the two Type II string

theories suggests that they are completely separate descriptions of physics. However, these mathematical

distinctions mask the fact that the theories become equivalent upon compactification. More explicitly,

the Type IIA theory compactified on a circle of radius R is exactly the Type IIB theory compactified on

a circle of radius α′/R. This equivalence is known as T-duality.

T-duality is a perturbative duality, in that the string coupling transforms as gs → gs
√
α′/R. In partic-

ular it is valid in the leading (tree or classical) approximation. Furthermore, as an exercise, the reader

may verify that the effect of T-duality in the X9 direction is to map

X9
L → X9

L , X9
R → −X9

R , ψ9
+ → ψ9

+ , ψ9
− → −ψ9

− (3.21)

By virtue of (2.25) we see that T-duality exchanges Dirichlet and Neumann boundary conditions for the

X9 coordinate, explaining why the dimensionality of stable branes differs by 1 between Type IIA and

36The fact that we can determine the low-energy degrees of freedom of a D-brane makes them valuable for model-building.

By contrast much less is understood about NS-branes, so they appear more rarely in constructions at the time of writing.

In M-theory, the worldvolume theory of coincident M2-branes is known to be a Chern-Simons theory called ABJM, but

little is known about the M5 case.
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Type IIB superstring theory.

The dualities between and within string theories we have encountered in this section are by no means

an exhaustive list. Principal among the omissions is S-duality, so named because it is a strong-weak

duality gs → 1/gs. In fact, one can often embed S-duality and T-duality into a larger space of duality

symmetries called U-duality. Sadly, such topics are beyond the scope of this course, and we instead

refer the reader to any modern textbook covering advanced string theory.

3.3 AdS/CFT

The AdS/CFT correspondence relates operators and their expectation values in two distinct theories37.

Typically a string theory in a (negatively curved) spacetime is dual to a (conformal) field theory in one

fewer dimensions, which may be viewed as living on the boundary38. For this reason, the correspon-

dence is a realisation of the holographic principle, whereby boundary dynamics suffice to reconstruct

bulk physics. The most well-developed AdS/CFT correspondence involves bulk Type IIB strings in an

AdS5 × S5 background and boundary N = 4 super-Yang-Mills theory. We shall focus on this example

henceforth.

The first fundamental claim of AdS/CFT is that there is a bijection

bulk string states Vi ←→ boundary operators Oi (3.22)

such that the quantum numbers match. Indeed one can show that the global symmetries of N = 4

correspond to the gauge symmetries of IIB strings in AdS5, making this matching plausible.

More concretely, one can uniquely identify the AdS duals to single trace operators in the CFT by

matching representations of the superconformal group, indexed by quantum scaling dimension ∆, chiral

spin (j1, j2), SU(4) R-symmetry representation and supersymmetry (if any). For example, in N = 4

there exists a 1
2 -BPS supermultiplet, by definition annihilited by half of the supercharges. This is the

stress-tensor multiplet, containing among other fields

Tr(φiφj)−
δij
6

Tr(φkφk) and Tµν (3.23)

where φi for i = 1, . . . 6 are real scalar fields. In supergravity the corresponding 1
2 -BPS multiplet contains

Φij and gµν (3.24)

whence we may immediately identify fields based on their tensor structure. The fact that the stress-

tensor T corresponds to the graviton g is a quite generic feature of holography, so gravity is always

37Anti-de-Sitter space (AdS) is the maximally symmetry solution to Einstein’s equations with negative cosmological con-

stant. It is the Lorentzian analogue of hyperbolic space.
38The bracketed terms are common conditions, but are not thought to be necessary.
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present on one side of the duality39.

The second fundamental claim of AdS/CFT is that there is an equality

〈O1 · · · On〉CFT = 〈V1 · · ·Vn〉string (3.25)

between the correlation functions of gauge-invariant local operators Oi in the CFT, and the S-matrix

elements of corresponding open string states represented by vertex operators Vi in the string theory. To

make this statement precise, we must relate the bulk and boundary parameters, defining

gs = g2
YM , L4/α′2 = 4πλ (3.26)

where L is the radius of AdS5, the boundary gauge group is SU(N) and λ = g2
YMN is the ’t Hooft

coupling.

It’s time to examine a motivational example. On the CFT side, define the Maldecena Wilson loop40

W (C) =
1

N
TrP exp

[
i

∮
C
ds
(
Aµ(xµ(s))ẋµ + θI(s)ΦI(xµ)

√
ẋ2
)]

(3.27)

where C = {xµ(s)} is a contour on R4 and θI(s) is a map taking each point of the loop to a point on S5.

According to (3.22), this is dual to an open string ending on the contour {xµ(s), θI(s)} on the boundary

of AdS5 × S5. At first glance, it seems we have pulled this identification out of thin air. In fact, this

follows quite transparently from the original construction promoting AdS/CFT, as follows.

Consider a stack of N D3-branes in flat space. The worldvolume theory of the branes is precisely

N = 4 super-Yang-Mills theory, with SU(N) gauge group. Open strings ending on the branes couple

to the gauge field Aµ parallel to the branes and scalar degrees of freedom ΦI describing the transverse

motion of the branes. Of course, we may calculate the correlation function of a Wilson loop involving Aµ

and ΦI purely within the four-dimensional field theory. But we may perform an equivalent calculation

from the the perspective of open strings in an AdS5 × S5 geometry produced from the backreaction of

the branes on the bulk spacetime41. The equality of the answers is precisely the statement (3.25).

Unfortunately, it is unfeasible to explicitly test (3.25), since it is not known how to consistently quan-

tise strings in an AdS5 × S5 background. To make progress, we must therefore judiciously choose the

parameters in (3.26) such that the string theory enters a calculable regime. Two of the most commonly

considered limits are

planar CFT, N →∞ , λ fixed ←→ classical string theory, gs → 0 (3.28)

39Recall that a massless spin 2 particle is necessarily a graviton, as famously proved by Weinberg in 1964.
40This is essentially just a supersymmetrisation of the ordinary Wilson loop.
41It is tempting to think of the stack of branes as living at the boundary of AdS5. Nothing could be further from the truth!

The branes are responsible for warping the spacetime, so in fact they lie deep within the bulk. Indeed, the holographic

nature of AdS/CFT is not immediately manifest from this brane construction.
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strongly coupled CFT, λ→∞ ←→ quantum type IIB supergravity, α′ → 0 (3.29)

We may now verify the claim (3.25) for the Wilson loop (3.27). In the limit (3.28) the claim becomes

(courtesy of a saddle-point approximation)

〈W (C)〉CFT = e−Son-shell (3.30)

where Son-shell is the string action evaluated on the classical worldsheet solution ending on {xµ(s), θI(s)}.

Of course, this is nothing other than the minimal area of a surface with the specified boundary values.

In the Poincaré patch the AdS metric is

ds2 =
L2

z2

(
dxµdxµ + dz2

)
(3.31)

for radial coordinate 0 < z < ∞. This diverges at the boundary z = 0, so generically the minimal area

surface drops down into the bulk. Moreover, this divergence implies that the area must be regularised

by applying some cutoff in z for the right-hand-side of (3.30) to be meaningful.

To perform an explicit calculation, we must specify a contour C. The most obvious choice is a rect-

angle embedded in the x0–x1 plane, with spacelike separation L and timelike separation T � L. It is a

foundational fact of lattice QCD that a Wilson loop on such a contour computes the effective potential

Veff(L) between a static quark and antiquark viewed as quantum mechanical particles via42

〈W (@A)〉CFT = e−TVeff(L) (3.32)

To verify the AdS/CFT correspondence, we will focus only on the power law behaviour of the effective po-

tential. In any conformal field theory, the absence of dimensionful parameters implies that Veff(L) ∼ L−1.

On the AdS side we may calculate the regularised area in the limit (3.29) via background field approxi-

mation, and obtain exactly Veff(L) ∼ L−1 as required43,44.

The GKPW formula provides an explicit realisation of (3.25) for general correlators in the limit

(3.29). Let h(x, z) denote a supergravity field in the bulk, with boundary values g(x, 0). Let O be the

corresponding operator in the CFT. Then

ZO,CFT [g(x)] =

∫
g(x)

Dφ e−S[φ] (3.33)

42The full derivation of this result is due to Barchielli, Montaldi and Prosperi, and is quite involved. One starts with the

gauge invariant operator representing a quark-antiquark bound state O(t) = ψ̄(t, 0)U(t, 0, t, L)ψ(t, L)|0〉, where U is a

Wilson line connecting (t, 0) and (t, L). The amplitude for this state at time 0 to propagate into a similar state at time

T is the overlap 〈O(0)O(T )〉. Path integrating out the quarks, one finds that the correlator satisfies a Schrödinger-like

equation, admitting the interpretation (3.32).
43The minimal area result depends on the ’t Hooft coupling as

√
λ, at odds with the perturbative CFT prediction of λ1.

This illustrates that the background field approximation breaks down before one enters the perturbative region of N = 4

super-Yang-Mills.
44In flat space, the minimal surface would have stayed at the boundary, leading to a confining potential Veff(L) ∼ L.
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where φ denotes all supergravity fields, S[φ] is the Type IIB supergravity action,
∫
Dh is subject to the

boundary condition h(x, 0) = g(x) and

ZO,CFT [J ] =

∫
Dψ exp

(∫
d4x L[ψ] +O(x)J(x)

)
(3.34)

is the generating functional for correlators of the CFT, and ψ denotes all CFT fields. Generically it is

not known how to compute the path integral in (3.33). For practical purposes, one may simultanously

pass to the limit (3.28), in which case the GKPW formula reduces to

ZO,CFT [g(x)] = e−Son-shell[φ] (3.35)

Alternatively, one may evaluate the supergravity partition function explicitly by determining supergravity

propagators and calculating the resulting Feynman diagrams, which are known as Witten diagrams.

Sample computations can be found in more extensive introductions to AdS/CFT.
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4 Ambitwistor Strings

Methods and inspiration from string theory have played an increasingly important role in the study of

field theory over the past 30 years. Here we review a recent application, revealing surprisingly compact

formulae for tree-level amplitudes. This section serves the purpose of exposing the student to the language

and notation of contemporary amplitudes, assumed knowledge for a growing number of talks.

4.1 MS Action

The ambitwistor string is a chiral infinite-tension version of the RNS string we introduced in Section 2.1,

living inside the space of complexified null geodesics, also known as ambitwistor space. The scatter-

ing amplitudes of the ambitwistor string yield particularly compact forms of field theory amplitudes in

various theories, depending on the matter content on the worldsheet.

To introduce the ambitwistor string, first recall that the phase space action yielding Hamilton’s

equations may be written

S[x, p] =

∫
p dx−H(x, p) dt (4.1)

For example, we may write the phase space version of the worldine action (2.1) for a massless particle as

S[xµ, pµ] =

∫
pµdx

µ − e

2
pµp

µdτ (4.2)

by defining the conjugate momentum45

pµ = e−1ẋµ (4.3)

In this formalism the gauge transformations (2.2) become

δξX
µ = ξPµ , δξPµ = 0 , δξe = dξ (4.4)

and e is easily seen to be a Lagrange multiplier enforcing the null condition p2 = 0.

From (4.2) we may obtain the bosonic ambitwistor string action by complexifying both the worldsheet

and the target space. Moreover, we require the model to be chiral, with the action involving only deriva-

tives d̄ ≡ dz̄ ∂z̄ in harmony with Witten’s original twistor string construction. Therefore we arrive at

the bosonic MS action46

S[Xµ, Pµ] =
1

2π

∫
Pµ∂̄X

µ − e

2
PµP

µ (4.5)

where we interpret Xµ as a map from the worldsheet to ambitwistor space, Pµ as a (1, 0)-form, and e as

a tangent-bundle-valued (0, 1)-form47.

45Here and in the string case the conjugate momentum coincides with the total momentum, since the theories are free.
46We use the Dolbeault operators ∂ = dz∂z and ∂̄ = dz̄∂z̄ .
47For concreteness, recall that a (p, q) form may be written ω = f(z, z̄)(dz)p(dz̄)q in some coordinates (z, z̄) on the

worldsheet, where f is an arbitrary (not necessarily holomorphic or anti-holomorphic) smooth function.
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Alternatively we may exhibit (4.5) as a degeneration of the bosonic string (2.3) by taking the α′ → 0

limit in a chiral manner. We first expand the auxiliary inverse metric h in terms of scalar fields (Ω, e, ē)

writing

hαβ∂α∂β = Ω (∂z∂z̄ + e∂z∂z + ē∂z̄∂z̄) (4.6)

so that the Polyakov action becomes, after a Weyl rescaling,

S =
1

2πα′

∫
dzdz̄

1√
1− eē

(
∂Xµ∂̄Xµ + e∂Xµ∂Xµ + ē∂̄Xµ∂̄Xµ

)
(4.7)

It is an elementary exercise to show this is equivalent to the action

S =
1

2πα′

∫
dzdz̄

1√
1− eē

(
Pµ∂̄Xµ + P̄µ∂Xµ − PµP̄µ + ePµPµ + ēP̄µP̄µ

)
(4.8)

where we have introduced additional non-dynamical fields Pµ and P̄µ. Furthermore, we are free to

redefine our auxiliary fields, allowing us to introduce a preferred chirality via

P → α′P , P̄ → α′2P̄ , e→ α′−1e , ē→ α′2ē (4.9)

The action becomes

S =
1

2π

∫
dzdz̄

1√
1− α′eē

(
Pµ∂̄X

µ + ePµP
µ + α′P̄µ∂X

µ + α′ēP̄µP̄
µ − α′2PµP̄µ

)
(4.10)

yielding (4.5) in the limit as α′ → 0. From this perspective it is not surprising the the critical dimension

for the supersymmetric ambitwistor string is 10.

Counterintuitively, we will now specialize to the case D = 4, where quantum anomalies render the

theory inconsistent48. Nevertheless, if we remain at tree level, ambitwistor string scattering amplitudes

yield correct and compact expressions for field theory amplitudes. Indeed D = 4 is an ideal mathemat-

ical playground in which to explore ambitwistor strings, since then ambitwistor space has a convenient

parameterisation as a quadric inside PT× PT∗, a Cartesian product of projective twistor spaces.

More explicitly49 given a null geodesic through x with momentum50 λαλ̃α̇ we define a twistor Za ∈

T = C4 and a dual twistor Wa ∈ T∗ = C4 via the incidence relations

Za = (λ̃α̇, µ̃
α) = (λ̃α̇,−ixαα̇λ̃α̇) , Wa = (µα̇, λα) = (ixαα̇λα, λα) (4.11)

48It is possible that one could add further matter content to the theory and reduce the critical dimension to D = 4 for

loop-level consistency. This remains an open problem.
49Henceforth we use Greek indices (α, β, . . . ) to denote spinor-helicity components on spacetime, and complex coordinates

(z, z̄) on the worldsheet.
50We can express an arbitrary vector xµ in spinor-helicity language using a 4-vector of Pauli matrices, viz. xαα̇ = xµσαα̇µ .

This is convenient because null vectors pµ then naturally yield simple tensors λαλ̃α̇, by virtue of the relation (exercise)

det(pαα̇) = pµpµ. The spinors λ and λ̃ are the most basic ingredients of scattering amplitudes.
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Clearly (Z,W ) corresponds to a null geodesic iff ZaWa = 0. More generally, we see that twistor space

and Minkowski space are related by a point-line duality

point xi ←→ line through Zi−1 and Zi ,

null line through xi and xi+1 ←→ point Zi .
(4.12)

such that the light-cone (and therefore conformal) structure of the theory is trivialised in twistor space.

This observation was a central tenet of the original twistor programme of Penrose, who argued that the

divergences of quantum field theory could be tamed by performing quantisation instead in the non-local

setting of twistor space.

We now write the action (4.5) in terms of (Z,W ). It is an easy exercise to show that

PµdX
µ =

i

2
(ZadWa −WadZ

a) (4.13)

using the incidence relations (4.11). Therefore

S =
1

2π

∫
Wa∂̄Z

a − Za∂̄Wa + aZaWa (4.14)

imposing chirality as above, where we interpret W and Z as
(

1
2 , 0
)
-forms and a as a (0, 1)-form.

4.2 Vertex Operators

To calculate string scattering amplitudes we require vertex operators. By the arguments of Section 1.2,

these are the first-quantised wavefunctions for external states, reinterpreted as worldsheet operator inser-

tions. Of course, we require these to be transformed from spacetime to ambitwistor space. Our strategy

will be to determine the wavefunctions on (dual) twistor space, yielding appropriate vertex operators by

a pullback to the quadric ZaWa = 0.

The massless field equations on spacetime may be written in spinor notation as

∂α1α̇1
φα1...αh(x) = 0 for helicity +h/2 (4.15)

∂α1α̇1φ
α̇1...α̇h(x) = 0 for helicity −h/2 (4.16)

∂αα̇∂
αα̇φ(x) = 0 for helicity 0 (4.17)

where φ is symmetric in all its indices and h ∈ Z>0. Fourier transforming immediately reveals the

solutions of definite momentum pαα̇a = λαa λ̃
α̇
a to be51

φα1...αh
a (x) = λα1

a . . . λαh
a eip·x , φα̇1...α̇h

a (x) = λ̃α̇1
a . . . λ̃α̇h

a eip·x (4.18)

By the same coincidence that led to the mysterious success of second quantisation in the early days

of quantum field theory, these solutions are precisely the position space wavefunctions for momentum

51Here a is simply a label, rather than the index of a twistor.
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eigenstates we require.

The Penrose transform relates solutions to the massless field equations of helicity h/2 to holomorphic

objects of homogeneity h−2 on projective twistor space. More rigorously, we must consider cohomology

classes {∂̄f = 0}/{f = ∂̄g} of smooth (0, 1)-forms f . We may then write

φα1...αh(x) =
1

2πi

∫
CP1

λα1 . . . λαhf(ixββ̇λβ , λβ) ∧ λγdλγ (4.19)

φα̇1...α̇h(x) =
1

2πi

∫
CP1

∂

∂µα̇1

. . .
∂

∂µα̇h

f(ixββ̇λβ , λβ) ∧ λγdλγ (4.20)

where we have employed homogeneous coordinates λα on CP1. To write the vertex operators on twistor

space we must invert this transform, a goal most easily attained with the help of Dirac δ functions. We

may define a Dirac δ function on the complex plane z = x+ iy via

δ̄(z) = δ(x)δ(y)dz̄ =
1

2πi
∂̄

1

z
(4.21)

where the second equality is a consequence of the two-dimensional Green’s function for the Laplacian,

δ(x)δ(y) =
1

2π
∇2 log(

√
x2 + y2) (4.22)

Note that δ̄(z) has homogeneity −1 in z.

We may similarly define Dirac δ functions on the Riemann sphere of various homogeneities by requiring

that the Weyl spinor λ coincides with a fixed spinor λa up to scale sa over which we integrate:

δ̄h(λ, λa) =

∫
C

dsa

sh+1
a

δ̄(2)(λa − saλ) (4.23)

Consider the mapping λ → rλ. Changing variables sa → sa/r leaves the integral unchanged up to a

factor of rh, so δ̄h(λ, λa) has homogeneity h in λ. Similarly, δ̄h(λ, λa) has homogeneity −h− 2 in λa.

It is easy to verify that δ̄h behaves as expected; that is, for any function g(λ) of homogeneity −h− 2,

g(λa) =

∫
CP1

δ̄h(λ, λa)g(λ) ∧ λγdλγ (4.24)

We employ an analogous construction to determine the (dual) twistor space wavefunctions corresponding

to (4.18), writing

Va(µ, λ) =

∫
C

dsa

sh−1
a

esa[µλa] δ̄(2)(λa − saλ) (4.25)

Ṽa(λ̃, µ̃) =

∫
C

dsa

sh−1
a

esa〈µ̃λa〉 δ̄(2)(λ̃a − saλ̃) (4.26)

for a helicity ±h/2 particle respectively, where we have changed notation from f to V to emphasise their

role as ambitwistor string vertex operators. For non-abelian theories these operators should be dressed

with appropriate color factors. We ignore such complications in this review.
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4.3 Scattering Amplitudes

We are now in a position to construct scattering amplitudes with k positive helicity and n− k negative

helicity gluons from ambitwistor string theory. The string amplitudes are defined in the usual way, as

correlators of vertex operators

An,k =

〈∫
dz1 . . . dzn Ṽ1 . . . ṼkVk+1 . . . Vn

〉
(4.27)

which may be inserted anywhere on the worldsheet. We may express this as a path integral52

An,k =

∫
D(λ, λ̃, µ, µ̃)

|GL(2;C)|

∫ k∏
i=1

dzidsi
si

δ̄(2)(λ̃i − siλ̃(zi))

n∏
j=k+1

dzjdsj
sj

δ̄(2)(λj − sjλ(zj))

× exp

−[µ ∂̄λ̃]− 〈µ̃ ∂̄λ〉+

k∑
i=1

si〈µ̃ λi〉δ̄(z − zi) +

n∑
j=k+1

sj [µ λ̃j ]δ̄(z − zj)

 (4.28)

in the gauge a = 0, where we’ve used integration by parts on the action. Observe that (µ, µ̃) only appear

in the exponential, which is exactly linear in these variables. Hence upon integrating out (µ, µ̃) we obtain

functional δ functions, enforcing

∂̄λ =

k∑
i=1

siλiδ̄(z − zi) , ∂̄λ̃ =

n∑
j=k+1

sj λ̃j δ̄(z − zj) (4.29)

Now integrating out (λ, λ̃) amounts to solving these equations, which is trivial in view of the definition

(4.21), yielding

λ(z) =

k∑
i=1

siλi
z − zi

, λ̃(z) =

n∑
j=k+1

sj λ̃j
z − zj

(4.30)

With these equalities, the amplitude becomes

An,k =

∫
1

|GL(2;C)|

n∏
a=1

dzadsa
sa(za − za+1)

k∏
i=1

δ̄(2)(λ̃i − siλ̃(zi))

n∏
j=k+1

δ̄(2)(λj − sjλ(zj)) (4.31)

where the additional factors of (za − za+1) in the denominator emerge from the color factors we ignored

at the end of Section 4.2. To make this expression slightly neater we change homogeneous coordinates

on the Riemann sphere, defining

σα =
1

s
(1, z) , (i j) = σαi εαβσ

β
j (4.32)

whence53

λ(σ) =

k∑
i=1

λi
(σ σi)

, λ̃(σ) =

n∑
j=k+1

λ̃j
(σ σj)

(4.33)

and

An,k =

∫
1

|GL(2;C)|

n∏
a=1

d2σa
(a a+ 1)

k∏
i=1

δ̄(2)(λ̃i − λ̃(σi))

n∏
j=k+1

δ̄(2)(λj − λ(σj)) (4.34)

52We use the standard amplitudes notation 〈a b〉 = λaαλαb and [a b] = λ̃α̇a λ̃bα̇ where raising and lowering of indices is done

with the totally antisymmetric tensor.
53We have rescaled λ and λ̃ by a factor of 1

s
, permitted since they are only projectively meaningful.
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This represents the full tree-level S-matrix of Yang-Mills theory in a remarkably compact fashion, as a

weighted sum over solutions to the rational scattering equations

k∑
i=1

λi
(σj σi)

= λj for j = k + 1, . . . , n

n∑
j=k+1

λ̃j
(σi σj)

= λ̃i for i = 1, . . . , k

(4.35)

These imply a simpler form by employing partial fractions. We observe(
k∑
i=1

λisi
z − zi

) n∑
j=k+1

λ̃jsj
z − zj

 =

k∑
i=1

λi
z − zi

n∑
j=k+1

λ̃jsisj
zj − zi

+

n∑
j=k+1

λ̃j
z − zj

k∑
i=1

λisisj
zi − zj

=

k∑
i=1

λiλ̃i
z − zi

+

n∑
j=k+1

λj λ̃j
z − zj

(4.36)

on the support of (4.35). Now defining

pµ(z) =

n∏
b=1

(z − zb)
n∑
c=1

pµc
z − zc

(4.37)

we see that pµ(z) is a simple tensor so p2(z) = 0 identically. In particular, differentation implies the

constraint p(za) · p′(za) = 0 for a = 1, . . . n. Expanding pµ(z) as a degree-(n−2) polynomial (courtesy of

momentum conservation) and performing some algebraic gymnastics yields the scattering equations

fa(z1, . . . zn) =

n∑
b6=a

ka · kb
za − zb

= 0 (4.38)

We finish by extracting a specific 3-point amplitude from (4.34), namely that with helicity configuration

(−−+). This will expose the reader to modern notation for field theory amplitudes, oft encountered in

seminars. We make the gauge choice

σ1 = (1, 0) , σ2 = (0, 1) , σ3 = (τ, σ) (4.39)

so that

(1 2) = 1 , (2 3) = −τ , (3 1) = σ (4.40)

The δ functions reduce to

δ̄(2)

(
λ̃1 +

λ̃3

σ

)
δ̄(2)

(
λ̃2 +

λ̃3

τ

)
δ̄(2)

(
λ3 −

λ1

σ
− λ2

τ

)
(4.41)

The third δ function fixes

σ = −〈1 2〉
〈2 3〉

, τ =
〈1 2〉
〈1 3〉

(4.42)

also contributing a Jacobian factor ∣∣∣∣∣∣λ1/σ
2 0

0 λ2/τ
2

∣∣∣∣∣∣
−1

=
σ2τ2

〈1 2〉
(4.43)
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The other two δ functions becomes

δ̄(2)

(
〈2 1〉λ̃1 + 〈2 3〉λ̃3

〈2 1〉

)
δ̄(2)

(
〈1 2〉λ̃2 + 〈1 3〉λ̃3

〈1 2〉

)
= δ̄(2)

(
〈2|P
〈2 1〉

)
δ̄(2)

(
〈1|P
〈1 2〉

)
= δ(4)(P )〈1 2〉2

(4.44)

where P is the total momentum. Hence (4.34) evaluates to

1

στ

σ2τ2

〈1 2〉
δ(4)(P )〈1 2〉2 = δ(4)(P )

〈1 2〉3

〈2 3〉〈3 1〉
(4.45)

which may be verified by comparison with any modern textbook.
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