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1 Introduction

This report is one of student-led online learning modules written by physics research
students and made available by SEPnet. The aim of these modules is to support peers
in the earlier stages of their research through transfer of information from the more
experienced research student. This particular module is intended for students carrying
out research in the field of ion trapping. In many cases, an early experimental physics
research student is expected to dive straight into an ongoing experiment and learn on
the go instead of forming a solid foundation at the start of their research. It is more
so the case in the field of ion trapping where it is common for students to inherit the
experimental set up of predecessors. Having only got a conceptual knowledge of the
experiments and due to the lack of undergraduate taught material of this specialised
field the student has to rely on the exchange of information from predecessors and their
theses, from supervisors and from may technical papers from which the student has to
extract the relevant information. Whilst the process of seiving through many materials
can serve to broaden one’s knowledge, it can be overwhelming and consumes a lot of
time that is better spent on the research problem at hand.

I have assembled here material and sources that I believe will give a junior ion
trapper an introduction to how Quadrupole Ion Traps work as well as a comprehensive
theorectical treatement of the trapping potential. The module starts by introducing
ion traps and their uses. A fully functional ion trap inevitably requires many working
components; all are briefly discussed here including the use of pumping systems to get a
trap into vacuum and electrical resonators to produce impedance matched high voltages.
A full theoretical derivation of the trapping potential and the solutions to the Mathieu
equations are provided. Pointers and useful tips are provided at the end.
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2 Paul Ion Traps

Looking around oneself with a cynical, half-squinted eye one might not be
immediately impressed by an endeavour whose pirincipal aim is to confine
and atom to a space around 100 times larger than the Bohr radius - it being
clear in these enlightened times that atoms in the solid state are actually very
well localised - however, further consideration of the details may convince one
otherwise. [1]

Ion Traps have made key contributions to many fields of physics: precision spec-
troscopy, atomic clocks, quantum state engineering,... The field of ion trapping has been
steadily growing since the inventions of the Penning trap in 1936 [2] and the quadrupole
mass filter in 1953 [3]. In 1989, the Nobel Prize in Physics was half jointly awarded to
Hans. G. Dehmelt and Wolfgang Paul ”for the development of the ion trap technique”.
And more recently in 2012, the Physics Nobel prize went to David J. Wineland, jointly
with Serge Haroche, for ”ground-breaking experimental methods that enable measuring
and manipulation of individual quantum systems”. David’s research had a specific fo-
cus on laser cooling of trapped ions and use of trapped ions for the implementation of
quantum information, control and computing.

There are two main types of ion traps: Penning Traps and Quadrupole Ion Traps.
Penning traps use DC electric fields combined with magnetic fields to trap ions. Quadupole
Ion traps (also refered to as Paul or rf traps) use radiofrequency (rf) electric fields and
DC electric fields to perform the same task. For the purposes of performing quantum
state controls (for ion-trap based quatum computers for example) Paul traps present a
lot less complications than Penning traps. In this module, we focus only on Paul Traps.

Paul traps themselves can take on different forms. The three main forms are Colinear
Traps, Endcap Traps and Surface Traps. Each type has its own benefit and drawbacks.
But all forms use the same principle to trap ions. We look next at examples of Linear
Ion traps and Endcap Style ion traps. The region of electric pseudo-potential minimum
in endcap style ion traps is defined by a point, as such, these traps are predominantly
used to trap single ions. On the other hand, colinear traps have a whole axis where the
pseudo-potential has a minimum. These are thus used for trapping strings of ions or
large Coulomb crystals.
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3 The Trapping Potential and Mathieu’s Equations [4]

3.1 The Trapping Potential

Earnshaw’s Theorem [5] states that it is impossible to confine a charged particle in 3D
using electrostatic forces alone. To prove this we consider a positively charged particle
at the centre of a conducting spherical shell. If we apply a negative DC voltage with
the aim of attracting the positively charged particle equally on all sides, it is inevitable
that the particle will fall to the closest part of the shell. Now consider the case where
we apply a positive DC to the spherical shell with the aim of repelling the particle in all
directions. In this set up all field lines point inwards. If we want the the particle to be
in a stable equilibrium about the centre, then the force field lines should point to this
equilibrium position. If all force fields point inwards, then the divergence of the field at
the centre must be negative. This is however impossible according to Gauss’ law in free
space which states that the divergence of the electric field is zero, ∇ ⋅E = 0.

Having now established that we cannot confine an ion using electrostatic fields alone,
we look for a non-static potential, φ, which allows the stable confinement of an ion in a
region in space. Since ∇ ⋅E = ∇ ⋅ (−∇φ), it suffices to solve Laplace’s equation, ∇2φ = 0,
to find a potential which can be used in ion trapping.

The equation which is the lowest order expansion of the potential which obeys
Laplace’s equation above in 3D Cartesian space (x, y, z) is of the form

φ = k(αx2 + βy2 + γz2) (1)

with constant k and condition α + β + γ = 0.
We note from the condition above that not all coefficients α,β and γ can simulta-

neously be positive (nor negative). In physical terms, at any given time, there could be
a positive confining potential in two of the three dimensions but there must also be an
anti-trapping potential in the third dimension.

We set α = β = 1. Then, γ = −2. This choice gives a cylindrically symmetric potential:

φ = k(r2 − 2z2) (2)

where r2 = x2 + y2 is the radial distance in the x − y plane from the origin.
Ion traps producing equipotentials of the above equation are made of a pair of hy-

perboloid endcap electrodes of revolution about the z-axis and a ring electrode around
the z-axis, also with a hyperbolic cross section. These traps are commonly referred to
as Paul traps after Wolfgang Paul who shared the Physics Nobel Prize in 1989 for this
invention.

Paul traps can be operated in different ways. An AC potential can be applied to
both the endcap electrodes and the ring electrode but with a phase difference of 180○.
Alternatively, the potential φ can be applied to the endcap electrodes whilst grounding
the ring electrode (or vice-versa). Clearly, with the latter option, we need not concern
ourself with relative phase optimisation between the endcaps and the ring. We choose
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to ground the ring electrodes and apply a potential φ0 to both endcaps (with no phase
difference),

φ0 = Udc + Vac cos(ωt) (3)

where Udc is the DC potential of applied to the endcap electrodes in addition to the
radio frequency (RF) voltage with angular frequency ω with peak amplitude Vac.

When the endcap and ring hyperbolas share the same asymptotes, consideration of
the boundary conditions yields

φ0 = φ(0, z0, t) − φ(r0,0, t) (4)

= k(−2z20 − r
2
0). (5)

Thus, our trapping potential becomes

φ =
−φ0

2z20 + r
2
0

(r2 − 2z2) (6)

The equations of motion of a particle of mass m and positive charge e in the Paul trap
are

mr̈ = eEr = −e
∂φ

∂r
(7)

mz̈ = eEz = −e
∂φ

∂z
. (8)

Thus the equations of motion in the radial plane becomes

mr̈ =
2e

r20 + 2z20
(Udc + Vac cos(ωt))r (9)

The above is in the form of the Mathieu equation

d2x

dτ
+ (a − 2q cos(2τ)) = 0 (10)

Going into dimensionless units by setting τ = ωt/2, we have dt2 = 4 dτ2/ω2. Then,

d2r

dτ2
+

8e

mω2(r20 + 2z20)
(−Udc − Vac cos(2τ))r = 0. (11)

And thus the a and q parameters of the Mathieu equation for the radial equation of
motion are respectively,

ar =
−8eUdc

mω2(r20 + 2z20)
, (12)

qr =
4eVac

mω2(r20 + 2z20)
. (13)
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Similarly, or by inspection of equation 6, we find the a and q parameters for the axial
equations to be respectively

az = −2ar =
16eUdc

mω2(r20 + 2z20)
, (14)

qz = −2qr =
−8eVac

mω2(r20 + 2z20)
. (15)

3.2 Solutions to the Mathieu Equation and the Stability Criteria [4]

It takes some 5 theorems and 5 corollaries to find the solutions to the Mathieu equation
(10). Later, I explicitly derive the solutions to the Mathieu equation. The object of this
section is to impose physical limitations to extract the stable solutions from the general
solutions. The general solution were found to be classified in two cases.

Solution type 1: The periodicity exponent of the two solutions are different and
thus form two independent solutions. They have the relation µ1 = −µ2 . Writing µ = µ1,
we have the even, r+, and odd, r−, solutions as follows.

r±(t) = eµτφ(τ) ± e−µτφ(−τ). (16)

Solution type 2: The periodicity exponents are identical. We also have the con-
dition µ1 + µ2 = 2ni where n is an integer and i is the imaginary unit. This condition
results in one of the solutions being periodic in which case the second solution takes
a non-periodic and non-pseudoperiodic form. For the case where r1(t) is the periodic
solution, the second solution becomes

r2(t) = πr2(π) ⋅ t ⋅ r1(t) + u(t) (17)

where u(t) is a periodic function with period π.
Stability

Stability means that the position of the particle being trapped is bounded at all times,
i.e. we do not lose the particle. We can straightforwardly see that solution type 2 is
unstable. Even though one of its solutions is periodic, the second solution has a term
proportional to t. Therefore as t→∞, r →∞. We get this type of solution when µ1 = µ2.
But since µ1+µ2 = 2ni, the condition to get this type of solution becomes to have integer
β where µ = iβ. Hence to avoid unstable solutions one condition is µ ≠ ni.

For solution type 1 where µ1 = −µ2, the relation µ1 +µ2 = 2ni is satisfied by any real
entries α and β in µ = α + iβ. However consideration of stability solutions means that
µ must not have a real component as otherwise, both solutions will have terms which
will grow exponentially in time. Thus our second condition for stability is to have µ as
purely imaginary.

Altogether, the condition for stability is to have µ = iβ where β is a non-integer.
For each stable solution, i.e. for each µ = iβ where β is a non-integer, there are a

and q parameters which would satisfy the Mathieu Equation. Interger values of β mark
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Figure 1: βz,r = 0, 1 mark the boundaries of the stability region of interest. Our ion can
be stably confined if our a and q parameters are manipulated to fall within the shaded
region.

the boundaries of stable and unstable solutions. Recall

az = −2ar ∝ Udc and (18)

qz = −2qr ∝ Vac. (19)

Typically, a Paul trap has a fixed RF drive frequency ω and the DC voltage is varied
to stabilise the system. The values of az (ar) which give stable solutions for any given
qz (qr) can iteratively be derived. The stability diagram in a-q space is plotted in figure
1. This can be used to find the possible Rf and DC voltage amplitudes required to
succesfully trap ions.
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4 Quiz: Solving the Mathieu Equation

The reader should now attempt to prove the following 6 theorems and 5 corollaries
involved in solving the Mathieu Equation,

d2w

dz2
+ (a − 2qcos(2z)) = 0, (20)

and produce the same conclusion as given at the end of this section. Note there is a
cheat sheet in the next section if you need some tips.

Theorem 1. If w1(z) is a solution, then so is w1(nπ + z)

Theorem 2. ∃ one odd and one even solution

Theorem 3.

i) w1(z) is even and w2(z) is odd

ii) w1(0) = w
′

2(0) = 1;w
′

1(0) = w2(0) = 0

iii) w1(z ± π) = w1(π)w1(z) ±w
′

1(π)w2(z)

iv) w2(z ± π) = ±w2(π)w1(z) +w
′

2(π)w2(z)

v) w1(z)w
′

2(z) −w
′

1(z)w2(z) = 1

vi) w1(π) = w
′

2(π)

Theorem 4. Floquet Theorem: The Mathieu equation has at least one solution y(z)
such that y(z + π) = σy(z) where σ is a constant.

Theorem 5. The product of the roots of the periodicity σ is unity.

Corollary 1. The Mathieu equation has at least one pseudo-periodic solution y(z) =

eµzφ(z) where µ is a constant and φ(z) has period π.

Corollary 2. If the Mathieu equation has a solution with periodicity factor σ(≠ ±1)
then ∃ an independent solution with periodicity factor σ−1.

Corollary 3. σ1 = σ2 iff σ1 = σ2 = ±1.

Corollary 4. The Mathieu equation has a basically periodic solution, that is, periodic
in π, iff the roots of the periodicity are equal.

Corollary 5. If y1(z) is a solution with periodicity factor σ, periodicity exponent µ,
then y1(−z) is a solution with periodicity σ−1, periodicity exponent −µ.

Theorem 6.

i) If w1(z) has period π, then the second solution has the form
w2(z) = ±π

−1w2(π) ⋅ z ⋅w1(z) + u(z), where u(z) has period π.

ii) If w2(z) has period π, then the second solution has the form
w1(z) = ±π

−1w
′

1(π) ⋅ z ⋅w2(z) + u(z), where u(z) has period π.
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Summary

The nature of the general solution depends on the nature of the roots of the periodicity
equation.

Case 1: The periodicity roots are different. σ ≠ σ−1. The periodicity roots have
different periodicity exponents µ and −µ. This results in two pseudo-periodic solutions:

y1(z) = e
µzφz

y2(z) = e
−µzφ−z

(21)

Case 2: The periodicity roots are identical. σ1 = σ2 = ±1. The periodicity roots have
the same periodicity exponents, µ1 = µ2. This results in one basically periodic solution
and one non-periodic, non-pseudo-periodic solution. for example:

y1(z) = φz

y2(z) = πw2(π) ⋅ z ⋅ y1(z) + u(z)
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5 Quiz Solutions [4]

Here are proofs for the necessary theorems and corrolaries for solving the Mathieu equa-
tion

d2r

dt2
+ (a − 2qcos(2t)) = 0. (22)

Theorem 7. If r1(t) is a solution, then so is r1(nπ + t) for interger n.

Proof. Let t′ = nπ + t.
Then dt′2 = dt2 and cos(2t′) = cos(2(nπ + t)) = cos(2nπ) cos(2t) − sin(2nπ) sin(2t)
= cos(2t). And thus we find that the Mathieu equation is invariant under the transfor-
mation t→ t + nπ.

Theorem 8. ∃ one odd and one even solution

This follows from classical theory of differential equations.

Theorem 9.

i) r1(t) is even and r2(t) is odd

ii) r1(0) = ṙ2(0) = 1; ṙ1(0) = r2(0) = 0

iii) r1(t ± π) = r1(π)r1(t) ± ṙ1(π)r2(t)

iv) r2(t ± π) = ±r2(π)r1(t) + ṙ2(π)r2(t)

v) r1(t)ṙ2(t) − ṙ1(t)r2(t) = 1

vi) r1(π) = ṙ2(π)

Proof. i) This is equivalent to theorem 8.
ii) By an appropriate choice of the arbitrary constants r1(0) and r2(0) in agreement with
i), the values of the derivatives also follow from the even/odd properties of the solutions.
iii) By theorem 7, if r1(t) is a solution, so is r1(t + π). Thus, this new solution is
expressible in terms of the even and odd solutions. Taking the additive solution, we
have
r1(t + π) = αr1(t) + βr2(t) and ṙ1(t + π) = αṙ1(t) + βṙ2(t). By setting t = 0, we find
α = r1(π) and β = ṙ1(π).
iv) Same principle of iii) apply.
v) Since the Mathieu equation has no terms in the first derivative, ṙ, it follows from the
Abel identity that

r1(t)ṙ2(t) − r2(t)ṙ1(t) = Constant. (23)

And since r1(0)ṙ2(0) − r2(0)ṙ1(0) = 1, by the choice of initial conditions it follows that

r1(t)ṙ2(t) − r2(t)ṙ1(t) = 1. (24)
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vi) By setting t = π in the subtractive equations of iii) and iv) and using the periodicity
given by theorem 7 with the results in ii), we find

r1(0) = 1 = [r1(π)]
2
− ṙ1(π)r2(π) (25)

r2(0) = 0 = r2(π)r1(π) − ṙ2(π)r2(π) (26)

= r2(π)[r1(π) − ṙ2(π)] (27)

Then, either r1(π) − ṙ(π) = 0 which is the result of interest, or r2(π) = 0. For the latter,
we find [r1(π)]

2 = 1 and the expression in v) becomes r1(π)ṙ2(π) = 1. Equating the last
two equations we find r1(π) = ṙ2(π).

Theorem 10. Floquet Theorem: The Mathieu equation has at least one solution y(t)
such that y(t + π) = σy(t) where σ is a constant.

Proof. : y(t) can be expressed as a linear combination of the even and odd solution r1(t)
and r2(t).
Let y(t) = c ⋅ r(t) where c is the row vector with arbitrary constant entries (c1 c2) and

r(t) = (
r1(t)
r2(t)

). Then, from theorem 9 iii) and iv), we find,

y(t + π) = c ⋅ r(t + π) = c ⋅Ar(t) (28)

where

A = (
r1(π) ṙ1(π)
r2(π) ṙ2(π)

) (29)

Thus to get solutions of the form y(t + π) = σy(t), we need

c ⋅A = σc. (30)

The solutions satisfy ∣c ⋅ (A − σ ⋅ I) ⋅ c−1∣ = 0 or equivalently ∣A − σ ⋅ I ∣ = 0. Expanding the
last expression yields

0 = (r1(π) − σ)(ṙ2(π) − σ) − ṙ1(π)r2(π) (31)

= σ2 − σ(r1(π) + ṙ2(π)) + r1(π)ṙ2(π) − ṙ1(π)r2(π) (32)

The second term becomes 2σr1(π) by theorem 9 vi) and the last two terms equate to 1
by theorem 9 v). The periodicity equation becomes

σ2 − 2σr1(π) + 1 = 0. (33)

Theorem 11. The product of the roots of the periodicity σ is unity.

Proof. If we define σ1 and σ2 the roots of the periodicity equation obtained in the last
theorem such that (σ − σ1)(σ − σ2) = 0. Thus, σ1σ2 = 1.
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Corollary 6. The Mathieu equation has at least one pseudo-periodic solution y(t) =

eµtφ(t) where we have defined σ = eµt with constant µ and φ(t) has period π.

Proof.

y(t + π) = σy(t)

φ(t + π) = e−µ(t+π)y(t + π)

= e−µπe−µtσy(t)

= σ−1e−µtσy(t)

= e−µty(t) = φ(t)

Corollary 7. If the Mathieu equation has a solution with periodicity factor σ(≠ ±1)
then ∃ an independent solution with periodicity factor σ−1.

Proof. Let y1(t) = e
µtφ(t) be a solution with periodicity σ such that y1(t + π) = σy1(t)

and φ(t) has period π. By theorem 7, y2(t) ≡ y1(−t) = e
−µtφ(−t) is also a solution. We

have

y2(t + π) = y1(−t − π) = e
−µ(−t−π)φ(−t − π) (34)

= e−µπe−µtφ(−t) (35)

y1(t + π) = e
µ(t+π)φ(t + π) (36)

= eµteµπφ(t) (37)

Taking their ratio, we find

y2(t + π)

y1(t + π)
= e−2µπ

e−µtφ(−t)
eµtφ(t)

(38)

= σ−2
y2(t)

y1(t)
(39)

≠
y2(t)

y1(t)
for σ ≠ ±1 (40)

Corollary 8. σ1 = σ2 iff σ1 = σ2 = ±1.

This follows from σ1σ2 = 1 in theorem 5.

Corollary 9. The Mathieu equation has a basically periodic solution, that is, periodic
in π, iff the roots of the periodicity are equal.

This follows from the expression y(t + π) = σy(t) and corollary 3.
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Corollary 10. If y1(t) is a solution with periodicity factor σ, periodicity exponent µ,
then y1(−t) is a solution with periodicity σ−1, periodicity exponent −µ.

This follows immediately form the proof of corollary 2.

Theorem 12.

i) If r1(t) has period π, then the second solution has the form
r2(t) = ±π

−1r2(π) ⋅ t ⋅ r1(t) + u(t), where u(t) has period π.

ii) If r2(z) has period π, then the second solution has the form
r1(z) = ±π

−1ṙ1(π) ⋅ t ⋅ r2(t) + u(t), where u(t) has period π.

[This is closely related to Ince’s theorem, that the Mathieu equation never possesses 2
basically periodic solutions for the same values of a and q, expect for the trivial case of
q = 0.]

Proof. For the first case i), we have from theorem 3 vi) combined with the periodicity
of r1

ṙ2(π) = r1(π) = r1(0) = 1 (41)

Then from theorem 3 iv), we have r2(t+π) = r2(π)r1(t)+ r2(t) which can be rearranged
to

r2(π)r1(t) = r2(t + π) − r2(t) (42)

Now let us define
u(t) = r2(t) − π

−1r2(π) ⋅ t ⋅ r1(t). (43)

Then

u(t + π) = r2(t + π) − π
−1r2(π) ⋅ (t + π) ⋅ r1(t + π) (44)

= r2(t + π) − π
−1r2(π) ⋅ (t + π) ⋅ r1(t) (45)

Thus

u(t + π) − u(t) = r2(t + π) − r2(t) − ππ
−1r2(π)r1(t)

= r2(π)r1(t) − r2(π)r1(t) by equation 42

= 0

Likewise, in case ii) where r2(t + π) = r2(t), we find r1(π) = ṙ2(π) = r2(0) = 1. Using
theorem 3 iii), r1(t + π) = r1(t) + ṙ1(πr2(t). We then define

u(t) = r1(t) − π
−1ṙ1(π) ⋅ t ⋅ r2(t). (46)

Then
u(t + π) = r1(t + π) − π

−1ṙ1(π)(t + π)r2(t) (47)

which can be used to show the required relation u(t + π) = u(t)
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Summary

The nature of the general solution depends on the nature of the roots of the periodicity
equation with two main cases to distinguish.

Case 1: The periodicity roots are different. σ ≠ σ−1. The periodicity roots have
different periodicity exponents µ and −µ. This results in two pseudo-periodic solutions:

y1(t) = e
µtφ(t) (48)

y2(t) = e
−µtφ(−t) (49)

Case 2: The periodicity roots are identical. σ1 = σ2 = ±1. The periodicity roots have
the same periodicity exponents, µ1 = µ2. This results in one basically periodic solution
and one non-periodic, non-pseudo-periodic solution. for example:

y1(t) = φ(t) (50)

y2(t) = πy2(π) ⋅ t ⋅ y1(t) + u(t) (51)

[Recall from theorem 5 that the product of the roots of the periodicity factor is unity.
And in corollary 1 we have made the definition σ = eµt. Thus

σ1σ2 = e
(µ1+µ2)π = 1 (52)

Hence µ1 + µ2 = 2ni with integer n. It follows that in Case 2, µ1 = µ2 = integer.
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6 Other Requirements

6.1 Resonator

One of the necessary requirements for the successful storing of ions in a radio-frequency
trap is the production of a single RF with minimal noise. Typical trapping conditions
for a Paul trap are a drive frequency between ω ≃ 10MHz and ω ≃ 50MHz and a trap-
ping voltage amplitude between V ≃ 200V and V ≃ 400V . A helical resonator can be
introduced to set up an LCR system which, at the resonance frequency, can be used
to supply a highly amplified single rf voltage to the trapping electrodes. Impedance
matching nullifies the power reflected at the load hence maximising the power at the
trapping electrodes whilst reducing noise due to (multiple) reflections. The higher the
quality factor of the resonator, the larger the step-up in voltage. To measure the quality
factor, the helical resonator can be connected to the trap and a tracking generator used
with a directional coupler to obtain a spectrum of the output voltage against the drive
frequency. [6] gives a detailed account on how to build a suitable helical resonator.

6.2 Vacuum

An ultra high vacuum is necessary in most, if not all, ion trap experiments. One reason
for this is to ensure stably trapped ions by minimising the collision frequency with
other elements. Another important reason is to avoid dark ions (mainly through charge
exchange collisions). Dark ions are other species that have been affected and trapped
by the system. They are so called because they do not fluoresce under the same lasers
as they have different transition frequencies. Dark ions can be very common when not
working in a ’good’ vacuum environment. They are easily identified by the presence of
a vacant space in a chain of ions, for example.

Officially, ultra high vacuum (UHV) is in the range 10−7 - 10−14 mbar. However, ion
traps are typically ran at 10−10 mbar or below. To achieve these pressures and maintain
them a series of pumps are used. In the ITCM group at Sussex, a roughing pump is
first used to get pressures down to 10−2 mbar. A turbomolecular pump that is backed
by this pressure is then used to bring the trap to roughly 10−8 mbar. The trap is then
baked (insulated and heated to about 100○C to rid the trap walls of any condensation)
for about a week. Following the cooling period the pressure reaches 10−10 mbar and the
system can be sealed. Adsorption pumps and sublimations pumps are used to further
reduced and maintain the low pressures. [7] is a comprehensice and excellent guide to
vacuum technology.

6.3 Review Paper

Here’s another piece I consider essential to ion trapping: the review paper Quantum
dynamics of single trapped ions [8]. Unless you are trapping ions for studies in cold
chemistry, you will want to do some quantum state engineering. This review paper
covers the essentials including two-level systems and laser cooling.
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