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0 Introduction to the Many Body problem

The many-body problem is considered as one of the most difficult and challeng-
ing areas of physics. It was realised in the 17th century that a simple system
of two interacting bodies can’t be described easily if interactions between the
constituents are taken into account. This is known as the Kepler problem or two
body problem, where the motion between two gravitationally interacting bodies
is described in the language of classical physics.

We can guess how the difficulty of the problem increases if, instead of con-
sidering two bodies, we want to describe the motion of three of them, interact-
ing with each other. The three differential equations constitute an extremely
complex problem from the classical point of view. When we have N(∼ 1023)
particles interacting, there are N differential equations describing the motion of
the particles. This adds an enormous complexity for the solution of the problem.

When quantum mechanics was developed, the theory of helium atom was the
analog of a two body problem (the nucleous is considered fixed), in the quantum
mechanical description. The wavefunction describes the system as a whole, in
this case composed of two electrons. It is an example of a two body problem in
quantum mechanics, where interactions between electrons are considered. The
wavefunction of such a problem is built up by an Slater determinant. As we will
see later, the N body wavefunction is considered as a Slater determinant only
for one type of particles: fermions.

However, it became clear soon that the description of a quantum system by
the many-body wavefunction is something unmanageable to do. In some areas
like chemistry, when one is maybe interested in the wavefunction of a single
molecule, solving the Schrodinger equation can be of interest. But, if one wants
to describe fundamental properties of matter, for example, metallic behaviour
or superconductivity, this approach is not suitable, since one has to find a wave-
function of 3N coordinates and time, being N ∼ 1023. This can’t be done even
in a computer, so that a new theoretical approach for such big systems needed
to be developed. This constitutes the basis of the many-body theory.

Why is many body interesting? The most important feature about many-
body systems is that collective behaviour between constituents give rise to emer-
gent phenomena. That is, if interactions weren’t considered between particles,
most of the properties in the system couldn’t be observed. One example of this
is the phenomenon of superconductivity, where the electron-phonon interaction
is essential for the formation of Cooper pairs in the BCS theory. In this sense,
many-body theory and statistical physics are equivalent, since both pretend to
describe macroscopic phenomena in terms of microscopic behaviour of the con-
stituents. In fact, many body theory englobes areas like statistical mechanics,
quantum mechanics, quantum field theory, complex analysis... The field is very
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extense and broad, another feature that makes it fascinating.

Finally, I want to say that two years ago, the field of many-body physics
was totally unknown for me. After this year and a half of my PhD, I have had
the privilege of study the subject and know just a tiny bit portion of it. In
this small amount of knowledge, I have discovered the depth and beauty of the
subject, and I hope to summarize this briefly in this notes. As a goal, I expect
someone starting in the field to find them useful, or even if this isn’t someone’s
field, to find them interesting.
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1 Introduction to second quantization

1.1 What does second quantization mean?

The name second quantization is introduced in analogy with the first quantiza-
tion in quantum mechanics. In first quantization, classical quantities are risen
to the status of operators, and its a good tool to describe systems with one or
a few number of particles. As the number of particles rises up, the first quan-
tization description becomes unmanageable. When we are dealing with a huge
number of particles in a system, lets say N , the wave function is now a function
of N coordinates (and time):

Ψ(~x1, ..., ~xN , t) (1.1)

In a solid, where the description of the system involves ∼ 1023 atoms, this is a
function we do not want to deal with.

The concept of second quantization is closely related to quantum field the-
ory. In fact, what we are doing is to assume that all the degrees of freedom of
the system are spreaded out in space and time continuously. This is the defini-
tion of a field. We are already familiar with classical fields such as the electric
or magnetic fields, gravitatinal field etc.... These classical fields are totally de-
terministic, and their values and contributions to a system can be known exactly.

On the other hand, a quantum field is a highly fluctuating object, that means
that we have to take care of these fluctuations, since sometimes they are totally
necessary for a good description of the system. When introducing second quan-
tization, some quantities that where not considered operators before, are now
risen to the status of operators as well. More concretely, a field in second quan-
tization is represented by an operator, and therefore can be expressed in matrix
notation.

The first example of second quantized quantity is the wave function1. When
we were in first quantization, ψ(~r, t) was considered a complex number, repre-
senting the probability amplitude of finding the particle at position ~r at time
t. Now, we will consider this as a field, with infinite degrees of freedom and
fluctuating in space and time. Doing that, some quantities such as the density :

ρ(~r) = ψ(~r)†ψ(~r) (1.2)

1Which should not be confused with the many-body wavefunction, since the later will
continue to be a complex number (depending on each coordinate of the particles). Here,
what we are rising to the status of operator is the single particle wavefunction from quantum
mechanics.
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are now considered operators as well. We will see this concepts much clearer in
the following sections.

Just a final remark about this introduction. Since we will be dealing with
systems where particle number is not fixed, we will be working in the grand
canonical ensemble. That means that there are three quantities fixed in the
system: volume, temperature (the system is in contact with a thermal bath),
and the chemical potential µ. This last quantity is extremely important, since
it measures the amount of energy necessary to introduce or remove one particle
from the system. In the grand canonical ensemble, the system can exchange
particles with the reservoir, and in fact, the fluctuations of 〈N〉 are important
in some specific problems.

Lets make a summary about this brief introduction:

• Second quantization is used for systems where the number of particles N
is large compared to the single particle description of quantum mechanics.

• The degrees of freedom of the system are the fields, which are now quantum
fluctuating objects.

• Some quantities like the wavefunction ψ from quantum mechanics are risen
to the status of operator.

• From a thermodynamical point of view, we will be working in the grand
canonical ensemble, where particle number is not fixed (particles can be
exchanged between the system and the reservoir).

1.2 Two types of particles

Imagine a box containing particles of the same type. If we make a classical
description of the system, each particle is thought as a point moving in space
and time, and we can follow its trajectory by solving Newton’s equations in
the system. That means we could in principle assign to each particle a label,
and we could say where is particle A at time t, where is particle B at time t′ etc...

This description is not valid in quantum mechanics. When we have an entire
system of identical particles, we say they are indistinguishable, that is, we can’t
say which particle is which, since they are all exactly the same. The many-body
wavefunction is an object depending on all coordinates of the particles, as we
argued in (1.1). We can see what happens when we exchange two particles, lets
say, particle at position ~rA and at ~rB . In that case, the wavefunction must only
change by a phase factor:

Ψ(~r1, ..~rA, ..., ~rB , ...~rN )→ eiθΨ(~r1, ..~rB , ..., ~rA, ...~rN ) (1.3)
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since the probability density must remain equal under the permutation:

|Ψ(~r1, ..., ~rA, ..., ~rB ...~rN )|2 = |Ψ(~r1, ..., ~rB , ..., ~rA...~rN )|2 (1.4)

If we now move the particles again, i.e, we make the inverse transformation as
before, we should have the same wavefunction, and then:

eiθΨ(~r1, ..~rB , ..., ~rA, ...~rN )→ ei2θΨ(~r1, ..~rA, ..., ~rB , ...~rN ) (1.5)

Inmediatly we find:

ei2θ = 1→ eiθ = ±1 (1.6)

We see here two possible results under particle exchange for the wavefunction.
One of them keeps the wavefunction unchanged under particle exchange, that
is, the change is symmetric in this case. On the other hand, there is an anti-
symmetric case, where the exchange of two particles brings a change of sign in
the wavefuncion. This provides a sufficient argument to classify particles in two
types: bosons and fermions.

When the wavefunction is invariant under a exchange of particles, that is,
there is no change in sign, we say that the many-body wavefunction is symmetric
under exchange, and this corresponds to bosons. Bosons are known by another
property regarding their intrinsic angular momentum: their spin is always an
integer number. This is the case of photons, with total spin S = 1. Other type
of bosons are phonons, representing vibrational modes of the atoms in the solid
around their equilibrium position.

On the other hand, fermions are particles with half integer spin, like the
electron, with spin S = 1/2, and their many-body wavefunction must be anti-
symmetric. This antisymmetry of fermions is very important. Indeed, is this
change of sign in the wavefuncion what makes fermions more special particles
than bosons. Due to this antisymmetry, two fermions could never be in the
same quantum state. This is known as the Pauli exclusion principle, and its
a purely quantum effect. When dealing with fermionic systems, this principle
must always be taken into account.

There is another important remark about bosons and fermions, more con-
cretely, we should distinguish between systems with conserved particle number
and those who do not conserve them. In particular, it is in the case of phonons
and photons were particle number is not conserved. Because both are collective
modes of a medium (crystal and electromagnetic field, respectively), one can in
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principle add or substract as many excitations as one wishes. In that case, the
chemical potential µ is absent, since there is no energy cost about adding or
substracting a mode.2

On the other hand, for fermionic systems µ must always be included in the
description, since fermions always conserve particle number. If we recall the
standard definition of µ from thermodynamics:

µ = −
(
∂E

∂N

)
T,V

(1.7)

we see that it is a cost in the energy of the system associated with a change of
the particle number3 N . Photons and phonons are excitations of some bosonic
fields, and one can add as many as one wishes without energy cost in the sys-
tem, since two bosons can occupy the same energy state. On the other hand,
fermions can’t occupy the same energy state due to the Pauli exclusion principle.
Therefore, an energy cost must be added to the system if there is a variation in
the total number of constituents.

But thats all the qualitative description about these systems. What are
the mathematics behind all this? We can figure out that as we are still using
quantum mechanics, operators algebra will remain as the basic tool to study
such systems. However, when second quantization arises, there is no classical
analogy, as with ordinary quantum mechanics. That has to be with the concept
of particle field. In classical physics, particles are considered point-like objects
evolving in space and time with some coordinates. Here, in the second quantiza-
tion language, particles can be created and destroyed, and they are represented
by the field operator ψ.

In the next section, we will start learning the basics of second quantization,
getting familiar with the notation.

1.3 The second quantization language

In second quantization, the single particle wavefunction doesnt exist anymore
as a complex number: instead, now it is an operator. We will call this new
operator the field :

ψ(~r, t) (1.8)

2However, not all bosons follow that. For example, when treating a system of α particles,
the total particle number is conserved, and the chemical potential µ must be included in the
description.

3Which is not fixed in the grand canonical ensemble, as we said before.
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and we will give to it the following interpretation: it destroys a particle at po-
sition ~r at time t. Its hermitian conjugate ψ†(~r, t), creates a particle at ~r in t.

However, and here is when everything starts, these operators can’t be treated
in the same way if they are representing bosons or fermions. To distinguish be-
tween both, and make the notation more clear, lets identify:

ψ(~r, t) → fermions (fermionic field)

ϕ(~r, t) → bosons (bosonic field)

For bosons, fields obbey a commutation algebra, which means that they satisfy:

[ϕ(~x), ϕ†(~y)] = δ(~x− ~y)

[ϕ(~x), ϕ(~y)] = 0

[ϕ†(~x), ϕ†(~y)] = 0 (1.9)

Thus, when dealing with bosons, we must always use a commutation algebra
and these relationships. The fields for bosons commute. This is not the case for
fermions, where an anticommutation algebra4 must be followed:

{
ψ(~x), ψ†(~y))

}
= δ(~x− ~y)

{ψ(~x), ψ(~y)} = 0{
ψ†(~x), ψ†(~y)

}
= 0 (1.10)

One important remark here is that this commutation/anticommutation rela-
tions are valid only at equal times. We will see later that, when these objects
are evaluated at different times, that has another physical interpretation, and
it is in general a difficult many-boy problem.

Our treatment now will follow fermionic fields, but the same can be applied
to bosons, only taking the commutation relations into account. Lets get back
to out first quantization scheme, where the single-particle wavefunction can be
expressed as a linear combination of any basis of states:

ψ(~r) =
∑
λ

cλφλ(~r) (1.11)

The basis states {φλ} must satisfy the completeness and orthogonality relations

4The commutation of two operators Â and B̂ is defined as [Â, B̂] = ÂB̂ − B̂Â. On the
other hand, the anticommutator of two operators A and B is defined as {A,B} = AB +BA
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(see exercise), and λ is an index running through all possible values of the spec-
trum. Usually, this basis states are the single particle states for the Schrodinger
equation. It may be useful for now (to keep the idea clear) to think about

λ representing the crystal momentum of a lattice ~k. Of course, the definition
is more general, and λ doesnt need to represent a momentum label specifically.
Lets choose the basis {φλ} to be the eigenstates of a single particle hamiltonian:

HSP = − h̄2

2m
∇2 + U(~r)

HSPφλ(~r) = ελφλ(~r) (1.12)

In a non-interacting system, where particles don’t see the others, the problem
is as easy5 as solving the single particle hamiltonian, and then summing up for
all the particles. We can say that, a non-interacting system of particles doesn’t
really constitute a many-body problem, since it can always be reduced to a single
particle problem.

Since in second quantization we are working with fields, equation (1.11) is
a linear combination of operators, where the single particle wavefunctions φλ
are the coefficients of the expansion. Concretely, the operators cλ represent
new field operators, but instead of doing it in real space, they are representing
operators in the λ space. The operator cλ destroys a particle in the state λ,
whereas its hermitian conjugate c†λ creates a particle in the λ state. That is why
they are called annihilation and creation operators, respectively. Because we
are working with fermions, these operators must satisfy the anticommutation
relations we were talking about before:

{
cλ, c

†
µ

}
= δµλ

{cλ, cµ} = 0{
c†λ, c

†
µ

}
= 0 (1.13)

Note that the δλµ is a Kronecker delta, since we are considering λ and µ indices
to be discrete. The treatment for bosons would just change anticommutation
by commutation. A very nice picture to keep in mind is that we can always
decompose the field by its Fourier components:

ψ(~r) =
1√
V

∑
~k

c~ke
i~k.~r (1.14)

5In the many body sense; that doesn’t mean that the single particle Schrodinger equation
is easy to solve itself, at least analitically.
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This is nothing but a linear combination of operators, each for a different mode
~k, where the coefficients of the expansion are determined by the set of plane
waves.

The non-interacting hamiltonian in second quantization can be expressed as:

H =

∫
d3~rψ̂†(~r)HSP ψ̂(~r) (1.15)

being HSP the single particle hamiltonian. The expression is telling us how the
total hamiltonian is determined by the energy of the field at every point in space.

Lets insert equation (1.10) here, and applying the properties of basis, we
should find:

H =
∑
λ

ελc
†
λcλ (1.16)

That is the non-interacting hamiltonian expressed in the λ space, in terms
of creation and annihilation operators for that space. If we follow our example,
this will be:

H =
∑
~k,σ

ε~k,σc
†
~k,σ
c~k,σ (1.17)

The same treatment could have been done for bosons, finding:

H =
∑
λ

ελa
†
λaλ (1.18)

where the a operators must satisfy commutation relations. A hamiltonian of
the form (1.15) looks very much like the one obtained in the single particle har-
monic oscillator. The only thing changing here is that instead of only one kind
of raising and lowering operators, we now have a family of them, one pair for
each value of λ. So the interpretation of a second quantized hamiltonian (for
non-interacting particles) is now clear: The system can be well described by a
set of quantum harmonic oscillators, each of them with energy ελ.

The way of expressing hamiltonians in terms of these creation and anni-
hilation operators constitutes the base for the many body theory. If we can
always find a set of operators ξλ, ξ

†
λ so that we can express our hamiltonian
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like (1.15) for fermions and (1.17) for bosons, then the system is diagonal in
that basis of operators, and the problem is solved. That implies that for a
non-interacting system, there is not more complication than diagonalizing the
hamiltonian, sometimes that implies to work in a different basis of operators,
but it is still a diagonalization exercise. We will see later that the difficulty
in many-body theory arises when interactions between the constituents of the
system are considered.

Since now ψ(~r) represents a field, the density is also an operator:

ρ̂(~r) = ψ†(~r)ψ(~r) (1.19)

which becomes very relevant when interactions are introduced in the system.

Finally, and as a little summary, we have found that the field operators ψ,ϕ
can always be expanded in another basis of operators, that, instead of acting
over the real space, they act over a space λ that can represent momentum space
or something else. The change of basis can also be inverted:

ψ(~r) =
∑
λ

cλφλ(~r)

cλ =

∫
d3~rφ∗λ(~r)ψ(~r) (1.20)

always keeping in mind that both cλ, ψ(~r) represent operators. We have given a
noce interpretation of equation (1.15), but what is the meaning of the operator

n~k,σ = c†~k,σ
c~k,σ? We will discover it in the next section, where we introduce the

quantum many-body state.

1.4 The many-body state

We have introduced before the creation and annihilation operators, both for
fermions and bosons, and thats all well to express the hamiltonian in terms of
them. However, when treating many-body systems, we will be interested in
knowing the state. Moreover, we would like to see how our second quantized
hamiltonian acts on it. For that, we need to introduce again a new notation.

The quantum mechanical state, in a system of N particles can be expressed
as:

|Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψN 〉 (1.21)
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For second quantization, since we are dealing with creation and destruction
operators, we can think about the many-body state like a state where we can
label each site with λi, making i run over all possible values of λ, and insert or
destroy particles on this site. To put this in mathematical notation, we want a
state representing how many particles are in state λ1, in λ3 or λ145. This big
ket we will express it by:

|MBS〉 = |nλ1nλ2 ....nλj ...〉 (1.22)

where the nλi represent the total number of particles in the state λ. One of the
most important states we can define now is the vacuum, that empty state where
there are no particles6:

|vacuum〉 = |0〉 = |000.....000...〉 (1.23)

That state has the property that gets annihilated if we want to remove a particle
from it (since there are no particles). Thus, it doesnt matter if we have fermions
or bosons since:

cλj |0〉 = 0

aλj |0〉 = 0 (1.24)

and whatever the value j is. Lets start with the case of bosons. Imagine we
want to insert two bosons, one of them in the λ1 state, and the other in the λ3.
The many-body ket then looks like:

a†λ1
a†λ3
|0〉 = |10100...00...〉 = |Ψ〉 (1.25)

Also, because we are dealing with bosons, we can put as many particles as we
want in the same quantum state. Therefore, we could add one more particle to
the λ1 state, resulting in:

a†λ1
a†λ1

a†λ3
|0〉 = |20100...00...〉 = |Ψ〉 (1.26)

since now we have created two particles in that state. However, this is not

6The vacuum state doesnt contain any particles on it, but that doesnt mean necessarily
that it doesnt have any energy associated. Remember the case of the single particle harmonic
oscillator: even when we didnt have any excitation, there was a vacuum energy of h̄ω/2
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complete yet. The many-body ground state must be a normalized state, that
means that:

〈Ψ|Ψ〉 = 1 (1.27)

Since bosonic operators commute, the order of the operators doesnt matter at
all when we are putting particles in different places. Also, for each value of λ,
there are n! times we can proceed by acting with a†λ in n times over the vacuum.
Thus, the appropiate (and normalized) expression for the many-body bosonic
state will be:

|BS〉 =
(a†λ1

)n1

√
n1!

(a†λ2
)n2

√
n2!

....
(a†λm)nm
√
nm!

|0〉 (1.28)

Things are different for fermions. This is due to the anticommutation relations
we introduced before. If we would like to insert two fermions in the same quan-
tum state:

c†λ1
c†λ1
|0〉 = 0 (1.29)

the answer is 0 (looking at (2.12), can you see why?). This is a prove that anti-
commutation algebra for fermions is compatible with Pauli’s exclusion principle,
where not more than one fermion can occupy a quantum state. This filling re-
striction makes fermionic systems special compared to bosons. For fermions,
the occupation factors nλi are restricted to be 0 or 1. Then, no nor-
malization factor is needed for the many body state. Also, one must take care
about the order of the operators. One can construct the state:

c†λ1
c†λ2
|0〉 = |1100...000...〉 (1.30)

and naively think that:

c†λ2
c†λ1
|0〉 = |1100...000...〉 (1.31)

This is not true. Due to the anticommutation relations, we have:

c†λc
†
µ = −c†µc

†
λ (1.32)
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Therefore, states (2.27) and (2.28) differ by a minus sign, and these signs must
always be taken into account when dealing with fermionic systems. When two
fermionic operators are swapped (for different states), there is always a minus
sign to carry.

This property of fermions lead us to calculate the ground state of a non-
interacting fermionic system very easily. Lets now identify λ = ~k, σ, where σ
represents the spin index, and ~k is the crystal momentum in the solid. To build
up the lowest energy state, we create a fermion in the lowest ~k value, with spin
up, acting on the vacuum. We can create another fermion in the same ~k state,
but now the spin must be down. Then, we continue filling the ~k states, till we
have no particles left. Therefore we have:

|FS〉 =
∏
k≤kF

c†~k↑
c†~k↓
|0〉 (1.33)

This state represents the Fermi sea, where the highest energy level filled is called
the Fermi energy. Therefore, a system of non-interacting electrons has a ground
state formed by filling all energies below the Fermi level. We will see that in
detail with the Fermi gas.

Remember that the energy states for the electrons in the solid are repre-
sented by a dispersion relation ξ~k = ε~k − µ measured respect a chemical poten-

tial. Therefore, for the Fermi momentum kF (that is, the highest value of ~k
when we fill the states), we have the Fermi energy ξ(kF ).

We are now in position to understand the expression (1.15) for the non-

interacting hamiltonian. First, lets see what does the operator c†λcλ do to the
many body state, for example, for a value of λk

7

nλk |λ1λ2....λk....〉 = c†λkcλk |λ1λ2....λk....〉 (1.34)

We first act with the annihilation operator on the state, removing one particle
from λk. After this, we create it again, obtaining the same many-body ground
state. However, we know that for a fermionic many body state, the different λ
states can only be 0 or 1. If the occupation of λk is 0, then the action of cλk
over the many body state gives 0, since there are no particles to annihilate. On
the other hand, if the state is occupied, we remove the particle and we put it
back again. In some sense, the operator nλk is counting how many particles we
have in that state. This operator is called the number operator, and it is very

7That k here should be confused with the crystal momentum. It is just an index, to
represent one of the possible values of λ.
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important in the many body description.

Now take a look at eq.(1.15). In the basis of creation and annihilation opera-
tors, the hamiltonian (total energy of the system) is the sum of the energies of
each state times the total number of particles in that state. Remember
that, for fermions, on each state we can only have zero or one particle.

Just a final note about bosons: for a bosonic hamiltonian, eq.(1.15) is also
valid, we just need to substitute bosonic operators instead of fermionic ones.
However, since bosons follow a commutation algebra, the occupation for each
state can run from 0 particles to N . In other words, for bosons we can put as
many particles as we want in a quantum state, and the number operator (a†λaλ
in that case) will give us how many particles are in one state λk.

For a (non-interacting) bosonic hamiltonian we will have:

H =
∑
kσ

εk,σa
†
k,σak,σ (1.35)

Without taking into account the spin index σ, this looks a lot like the quantum
harmonic oscillator. When we where working with one particle, the energy of
the oscillator was determined by the level n where the particle was located.
Here, in the second quantized picture, each energy level εk can have a different
number of excitations, counted by the number operator nk,σ = a†k,σak,σ. This
gives a nice interpretation to the second quantised hamiltonian: a second quan-
tised hamiltonian8 is a set of quantum oscillators, each of them with different
energy, and this energy is given by the number of particles in that mode k. For
fermions, the case is easier, since every quantum oscillator can only have one or
zero excitations for each mode. But for bosons, this restriction disappears.

1.5 Exercises

1)Completeness and orthogonality The completeness and ortogonality relations
for a basis are:

∑
λ

φ∗λ(~ri)φλ(~rj) = δ(~ri − ~rj)∫
d~rφ∗λ(~r)φµ(~r) = δµλ (1.36)

where λ and µ are discrete index. Using these relations, and equation (1.11),

8And again, non-interacting
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obtain a second quantized expression for the density operator ρ̂(~r).

2) Consider equations (1.9) and (1.10), for bosonic and fermionic fields. Mak-
ing use of (1.11), and being φλ(~r) a complete and orthogonal set of functions,
obtain both the commutation/anticommutation relations in λ space.

3)Bogoliubov transformation

a) Consider the following single-boson hamiltonian:

H = −ωa†a+ E0(a†a† + aa) (1.37)

where ω,E0 are energy parameters. Check that the change:

b = ua+ va† (1.38)

leaves the commutation relations unchanged, provided that:

u2 − v2 = 1 (1.39)

b) Identify u = cosh(z) and v = sinh(z). Show that the hamiltonian can be
diagonalized in the b operators, providing the condition:

tanh(z) = −E0

ω
(1 + tanh2(z)) (1.40)

and express ∆ and K in:

H = ∆b†b+K (1.41)

in terms of E0 and ω.

16



2 Treating interacting systems

2.1 A many-body problem

We have introduced before the second quantization language, focusing only on
non interacting systems. The thing is that for such systems, a diagonalization
of the hamiltonian is always possible, and expressing H in the form of (1.15)
completely solves the problem.

However, we know that in reality, the constituents of a system do interact
with each other. We can have interactions between electrons in a solid, or elec-
trons interacting with phonons, electrons interacting with spin impurities in a
material etc...

This terms add an aditional complexity to the hamiltonian. In what follows,
we will consider just the electron-electron interactions. Terms of this type can
be written:

Vint =
1

2

∫
d3~x

∫
d3~yρ(~x)V (~x− ~y)ρ(~y) (2.1)

where the interaction term V (~x − ~y) depends only on the relative coordinates
of the particles. In second quantization, this becomes an operator because the
density ρ is an operator. However, with interacting terms one always have
to be careful with the order of the field operators. The rule to follow
is simple: All creation operators must be to the left of all destruction operators
in an interacting term. The reason for that is to avoid terms where particles
interact with themselves, something we know it doesnt make sense. The second
quantized interaction is:

Vint =
1

2

∫
d3~x

∫
d3~y : ρ(~x)ρ(~y) : V (~x− ~y) (2.2)

where : ρ(~x)ρ(~y) := ψ†(~x)ψ†(~y)ψ(~x)ψ(~y) is the normal ordered product of
the densities, expressed with the : symbol. The interaction term is the usual
Coulomb potential:

V (~x− ~y) =
e2

4πε0

1

|~x− ~y|
(2.3)

Now, we can use the plane waves basis to expand the field operators in ~k space:

ψσ(~r) =
1√
V

∑
~k

c~k,σe
i~k.~r (2.4)
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Substituting that in (3.2), we are left with:

Vint =
1

2V 2

∑
k1,k2,k3
k4,σ,τ

c†k1,σc
†
k2,τ

ck3,σck4,τ

∫
d3~x

∫
d3~ye−i(

~k1− ~k3)~xe−i(
~k2− ~k4)~yV (~x− ~y)

Lets now change variables:

~r = ~x− ~y → ~x = ~r + ~y (2.5)

Then we have:

Vint =
1

2V 2

∑
k1,k2,k3
k4,σ,τ

c†k1,σc
†
k2,τ

ck3,σck4,τ

∫
d3~r

∫
d3~ye−i(

~k1− ~k3).~re−i(
~k2− ~k4+~k1−~k3).~yV (~r)

Now lets call:

~q = ~k1 − ~k3 (2.6)

so that we end up with:

Vint =
1

2V 2

∑
q,k2,k3
k4,σ,τ

c†k3+q,σc
†
k2,τ

ck3,σck4,τ

∫
d3~re−i~q.~rV (~r)︸ ︷︷ ︸

V (~q)

∫
d3~ye−i(

~k2− ~k4+~q).~y

The integral in ~y is a delta function, giving the condition9

δ(~k2 − ~k4 + ~q)→ ~k2 = ~k4 − ~q (2.7)

The final expression for the interacting term becomes:

Vint =
1

2V

∑
q,k3,k4
σ,τ

V (~q)c†~k3+q,σ
c†~k4−~q,τ

c ~k3,σc ~k4,τ (2.8)

9This is the conservation of momentum
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This has a nice interpretation if we look at it. There are two annihilation opera-
tors for different value of the spin, and two creation operators. We can imagine
this as a fermion with spin τ and momentum ~k4 meeting a particle with spin σ
and momentum ~k3. At the same time, and when they interact, a momentum ~q is
transferred from one particle to the other, due to the interaction. The new cre-
ated particles conserve the spin, but one of them has momentum ~k3 +~q, whereas
the other has ~k4 − ~q after the scattering. Also, the q = 0 term is excluded in
the sum (why is that the case?).

The scattering amplitude of the interaction is given by V (~q), which is nothing
but the Fourier transform of the potential.10 Therefore, we are left with a
second quantised expression to add to out non-interacting hamiltonian, just by
considering any kind of interaction between electrons.

2.2 The non-interacting Fermi gas

To start getting familiar with the many-body formalism, we apply it to the sim-
plest case. Consider a gas, where electrons don’t interact with each other. We
have seen that for this case, the non-interacting hamiltonian can be obtained
by just summing all the individual particle hamiltonians:

H =

N∑
i=1

p2

2m
(2.9)

If the electrons don’t interact, we know the dispersion relation as a function of
~k (momentum crystal analogy):

ε~k =
h̄2~k2

2m
(2.10)

and therefore, there is rotational symmetry in the ~k space. We have already
seen what would the the second quantized hamiltonian look like, making use
of creation and annihilation operators. Using them, the hamiltonian (3.9) is
expressed as:

H =
∑
k,σ

ε~k,σc
†
~k,σ
c~k,σ (2.11)

10Though there might be some cases where the Fourier transform of a given potential doesnt
exist, i.e the case of interactions by a Lennard-Jones potential.
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At zero temperature, the only state of the system is the ground state11,
which we have defined previously as the Fermi sea. We create it by filling the
vacuum successively in ~k:

|FS〉 =
∏
k≤kF

c†~k↑
c†~k↓
|0〉 (2.12)

Doing that, and because the rotational symmetry in k from the dispersion rela-
tion, the Fermi energy is the surface of a sphere of radius kF (Fermi wavevec-
tor). To calculate the Fermi wave-vector, the total number of particles (its
average) must be equal to:

〈N〉 = 2
∑
k≤kF

〈n~k〉 (2.13)

where the 2 comes from summation over spin. At T = 0, we only average the
number operator over the ground state. We already know that this is the Fermi-
Dirac distribution, such that:

〈nk〉 =

{
1 k ≤ kF
0 k > kF

(2.14)

In the thermodynamic limit12, we can convert he summation into an integral:

∑
k

→ V

∫
d3~k

(2π)3
(2.15)

Then we have:

〈N〉
V

= 2

∫
d3~k

(2π)3
.1 =

1

π2

∫ kF

0

dkk2 =
1

3π2
k3
F (2.16)

which gives a direct relation between the Fermi wave-vector and the density of
the system.

11State of minimum energy, the definition is the same as in ordinary quantum mechanics,
although here we are consider a macro-state or ensemble.

12That limit is used commonly in many body physics. It allows us to take the volume of the
system V →∞ to convert summations into integrals. Doing that, we are saying that the low
energy physics of the system shouldnt change as the volume is increased, and thus we have
macroscopic properties. Another interesting limit is the continuous limit, where the lattice
spacing a→ 0.
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This simple model offers a poor approximation of a solid, we know that elec-
trons interact with each other, and in fact, this interactions are not neglectable
respect to the kinetic energy, but dominant!. However, when interactions are
considered, there is a way to express the system in terms of some new particles
with renormalized parameters, as if they were not interacting between them.
That is the Landau-Fermi liquid theory.

2.3 Landau-Fermi liquid theory: concept of quasiparticle

What is the picture when we turn on the interactions? As we know, electrons
are filling the Fermi sea till some energy level called the Fermi level (εF ) at
T = 0 when there are no interactions. However, the bad news is that when
interactions are considered, they are dominant over the kinetic energy terms of
the hamiltonian. Therefore, it seems like perturbative techniques are insufficient
to describe such a system. Also, experimental evidence suggests that the non-
interacting model of the previous section (the Fermi gas) describes considerably
well most of the low energy properties of too many metals. If interactions are
dominant in the hamiltonian, how can we explain that analogy between exper-
imental evidence in real metals and the non-interacting picture?

Our total hamiltonian describing a Fermi liquid is:

H =
∑
k,σ

ε~k,σc
†
~k,σ
c~k,σ +

1

2V

∑
q,k3,k4
σ,τ

V (~q)c†~k3+q,σ
c†~k4−~q,τ

c ~k3,σc ~k4,τ (2.17)

where interactions between electrons are considered in the second term. This
second term is a set of scattering events between electrons. As a result of this
interaction, excitations appear above the Fermi surface. We will expect the
electron occupation to change in the vicinity of the Fermi surface. Due to that
interactions, we would have passed from the non-interacting ground state (the
Fermi sea), to an interacting one, where the Fermi surface and the occupation
number are changed. It seems a difficult problem then, since eq. (2.17) cant be
diagonalised containing the interacting term.

However, there is another approach. Landau proposed the following: if in-
teractions are turned on smoothly and slow, these excitations close to the Fermi
surface can be considered still as electron excitations, but with renormalized pa-
rameters. Therefore, the picture becomes non-interacting again. This is called
adiabatic continuity, which suggests a direct mapping between an interacting
ground state to a non-interacting one, by only changing some parameters of the
model.
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Figure 1: Concept of quasiparticle: Electrons inside a real material interact
with each other. That can be thought as if in every point of space, each electron
would be suffering the potential created there by other electrons (left). In
the Landau-Fermi liquid theory, these interactions are considered as part of
new quasiparticles, that move freely (non-interacting with each other) in the
material. The effect of these quasiparticles on the electrons manifest in different
values for the mass and energies.

These low energy excitations that now describe a non-interacting system are
called quasiparticles. A quasiparticle can be thought as an electron surrounded
by interactions with the other constituents. In other words, we can imagine a
quasiparticle like an electron dressed by interactions, and therefore a bit heavier.
These quasiparticles are only alowed to live in the vicinity of the Fermi surface.
The fact that these new particles live close to the Fermi surface says something
about their stability: they have a long life. Conceptually, just imagine that
there is not too much enery cost if we perturbe slightly an electron and we put
it a bit above the Fermi surface. Since that doesn’t cost too much energy, the
system will be stable under such perturbations.

What is then the advantage of using such a picture? Well, the first thing is
that working with quasiparticles, we don’t have to deal with the second term of
(2.17). The effective hamiltonian has now changed to:

Heff =
∑
k,σ

ξ~k,σc
†
~k,σ
c~k,σ (2.18)

which is non-interacting. The occupation number associated with the quasi-
particles follows the Fermi-Dirac statistics: then, at T = 0, this is just a step
function. Now, the creation and annihilation operators create or destroy a quasi-
particle of energy ξ~k. The mass associated with these quasiparticles is called
the effective mass, and usually denoted by m∗ > me, where me is the mass of
the electron (∼ 9.12.10−31kg).

Therefore, the Landau-Fermi liquid theory provides a nice interpretation
about why a big number of metals can be described by a non-interacting model.
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2.4 Finite temperature vs zero temperature

Our treatment has concerned so far systems at zero temperature. In such sys-
tems, the only state occupied in the ensemble is the ground state. This is because
as temperature is getting lower, some degrees of freedom of the system become
irrelevant. According to statistical mechanics:

P (εn) ∼ e−βεn (2.19)

is the probability of finding the system in a state of energy εn. In the limit13

β → ∞, the exponential with highest value is that with the lowest εn, and
exactly the ground state is found.

However, we could ask ourselves what happens at T 6= 0. We will not go
into detail here, but we only one to make a clear separation between the zero
temperature case and finite temperature.

At finite temperature, there is no single state for the system, since it is in
an ensemble, and each of the states has probability (3.19). Therefore, an expec-
tation value:

〈O〉 =
Trace(Oρ)

Traceρ
(2.20)

involves the operator ρ̂ = e−βĤ . In general, Ĥ can be expressed as a non-
interacting part and an interacting one:

Ĥ = Ĥ0 + V̂ (2.21)

The exponential dependence on the temperature constrast with the Heisenberg
picture14 dependence for the operator O:

O(t) = eiHt/h̄Oe−iHt/h̄ (2.22)

Both exponential operators involve H now, and then, the interaction of the
hamiltonian V̂ needs in principle to be treated separately for both terms. This
can be avoided if we consider β as an imaginary time, so that β = it = τ . This
is called the Matsubara formalism. In the Matsubara formalism, there are only

13Remember that β = 1/T (kB = 1)
14To understand the Heisenberg picture, go to section 4.3
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some allowed excitations ωn (called Matsubara frecuencies), and the correlators
(See next subsection) are expressed in terms of them as a infinite sum.

From now on, we will focus only in the T = 0 case, where this mathematical
trick is unnecessary. We will only say that there are different approaches to
solve a many-body problem for a zero temperature case.

The first of them is to calculate all quantities (correlation functions) in terms
of the ground state for the zero temperature case. More concretely, in pertur-
bation theory only the ground state of the non-interacting system is considered
in the expansion.

The other approach is to work out the problem for a general temperature T ,
and once we have the correlators, obtain the zero temperature ones by analytical
continuation15. Which of the two approches is better is something to choose
depending on the problem under consideration.

2.5 Correlators

We have arrived perhaps at the most important part of this very brief intro-
duction to the subject. What is a correlator?. Correlation functions appear in
two many branches of physics, from magnetism to a simulated hard disks fluid
model. Lets remember from quantum mechanics what is the probality of passing
from one state |n〉 to a state |m〉 under some perturbation V over the initial
state. This is given by the Fermi golden rule:

Pn→m ∼ |〈m|V |n〉|2 (2.23)

This is nothing but a number, that tells us how the state changes when a per-
turbation is added to it. In order to get a non-zero answer16, the action of the
operator V over |n〉 must transform the state into |m〉.

A correlator covers this idea (roughly speaking). It can be regarded as a
disturbance in the system, and what is the probability amplitude of that distur-
bance taking place.

More concretely, in a quantum field theory, dynamical objects are the fields.
We have seen before that, for each type of particle, we assign one scalar field
(the particle-field), creating or annihilating a particle in space-time. We want
to make use of that tools now, to calculate how the particle can move from one
state to the same one after some action of an operator in the state.

15That is a rotation in the complex plane, passing from the imaginary time τ to real time.
16Because we are supposing |n〉 and |m〉 to be orthogonal.
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Imagine the following situation: a system of interacting particles in a box.
Lets consider that the configuration of the system is some state 17|Ψ〉. Then,
we select the particle at position ~r1 at time t, and we propagate the particle
from ~r1 to ~r2, in an interval of time t′ − t. In the process, the particle can
change its spin projection from σ to σ′. The final state has to be |Ψ〉 again, but
we just want to see what is the probability amplitude of such a process.18. In
our second quantised language, that is the same as saying that we destroy the
particle in (~r1, t) to create it at (~r2, t

′). In all the propagation process, there are
interactions of this particle with the others. This situation we have described
here is called the single particle Green’s function19 and we define it as:

Gσ,σ′(~r1, ~r2, t, t
′) = −i〈Ψ|T̂ψσ(~r1, t)ψ

†
σ′(~r2, t

′)|Ψ〉 (2.25)

Here, T̂ represents the time ordering operator, defined acting on two20 operators
Â and B̂:

T̂ Â(t)B̂(t′) =

{
Â(t)B̂(t′) t > t′

±B̂(t′)Â(t) t′ > t
(2.26)

the minus sign in the second case appearing for fermionic operators (remember
that swapping two fermionic operators gives a minus sign always). Although
we have written ψ for the field operator, the expression above is valid also for
bosonic operators, just by taking into account the commutation properties. We
have to choose one type of particles for the description, and we will keep go-
ing for fermions, since Pauli’s exclusion principle simplifies things. We have to
say that the expression above is only valid for real time, and zero temperature
systems, therefore |Ψ〉 = |GS〉 is the ground state of the whole interacting
system. In translationally invariant systems, and with a hamiltonian indepen-
dent of time, this correlator is only a function of the relative position ~r1 − ~r2

and the interval t− t′, as both momentum and energy are conserved.

17Which is not necessarily the ground state, it can in principle be any of the possible states
of the ensemble

18Look at expression (2.23). Here, the probability amplitude won’t be a number, but a
function of the coordinates ~r1 and ~r2

19You can find the definition of a propagator in every QFT book. In more technical ways,
the propagator is a solution of the equation:

−D̂G(x− y) = δN (x− y) (2.24)

where D̂ is a differential operator and N the dimension of space. However, here we are talking
about response functions, that is, how the system responds under external perturbations (for
example, if we try to measure something)

20There is a generalisation of the time ordering operator, where all operators act in a
causalway, starting from the right those operators appearing first in time.
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Lets now Fourier transform the expression above. The result is, using the
plane wave representation21:

Gσ,σ′(~r1 − ~r2, t− t′) = −i 1

N

∑
k,k′

ei
~k.~r1e−i

~k′.~r2〈T̂ c†k,σ(t)ck′,σ′(t
′)〉 (2.27)

where the average 〈...〉 is over the interacting ground state |Ψ〉 = |GS〉. For a
fermionic system, we know already this state (the Fermi sea) because we dis-
cussed it before.

Lets work out this expression for the case of a Fermi gas. In the case of
a Fermi gas, the hamiltonian is totally independent of the spin σ, therefore
we don’t expect any change in the spin projection. Also, it is clear that if we
remove a particle from the Fermi sea (or alternatively, we create a hole) with

momentum22 ~k, then the particle created again must have the same momentum
~k, so that the correlator is non-zero. Explicitly:

Gσ,σ′(~r1 − ~r2, t− t′) =
−i
N

∑
k

ei
~k(~r1−~r2)〈T̂ c†k,σ(t)ck,σ′(t

′)〉δσ,σ′ (2.28)

for the Fermi gas. Lets ommit the spin index. This can be written as:

G(~r1 − ~r2, t− t′) =
1

N

∑
k

ei
~k(~r1−~r2)G(~k, t− t′) (2.29)

Since these are both wavefunctions for non-interacting systems, call themG0(~r1−
~r2, t− t′) and G0(~k, t− t′). We are now left with the evaluation of the quantity:

G0(~k, t− t′) = −i〈GS|Tc~k(t)c†~k
(t′)|GS〉 (2.30)

which is left as an exercise in the problems. But lets give an interpretation
of both Green’s functions: In real space, it provides information about the
probability amplitude of puting an electron in one position and time and let
it propagate to another position and time. In momentum representation, as in
eq.(2.30), we create a particle at time t′ with some momentum and we let it
propagate. We argued before that, because we are returning to the same state,
the only possibility to conserve momentum is that the particle we remove in t
has exactly the same value ~k for it.

21Remember this is the usual choice for translational invariant systems.
22We have to say that notation here is a bit lazy. The sum in k is in fact a sum in ~k, but

we are just ommiting this keeping in mind that k represents a 3-dimensional vector.
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Depending on the sign of t− t′, we distinguish between two types of correla-
tors: retarded and advanced. We don’t need to go into much detail here, however
it is useful to know that this distinction between both has some justification.
Moreover, the analytical properties of both functions are exactly opposite: the
retarded correlator is always analytic in the complex upper half-plane of the ex-
citation energies ω, whereas the advanced one is analytic in the lower half plane.

Correlators are the most interesting quantities in many-body physics, since
they provide direct information about measurable properties of the system.
However, every measure taken in a lab has to be in relation with a retarded
correlator, since otherwise, causality is violated23.

I want to make a final connection with the field theory for this very brief
introduction of correlators. One of the nice features about them is that they
can also be calculated by the functional derivative of the Feynman path integral
Z. That is why sometimes Z is called the generating functional. Depending on
the problem under study, a field theoretic approach may be more convenient24

than the many-body description we were considering before, whereas sometimes
it can be the other way around.25

2.6 Exercises

1) Evaluation of the non-interacting single particle Green’s function at T = 0:
Go back to equation (2.30). By making use of the Heisenberg representation for
operators:

c~k = eiHtc~ke
−iHt (2.31)

calculate G0(k, t − t′), being careful with the time ordering operator. (Hint :

The action of the exponential operator eiĤt over the ground state is an eigen-
value equation for a non-interacting system. More over, adding or removing an
electron to |GS〉 will only change the total energy by εk)

b)Sometimes is more convenient to express the non-interacting Green’s func-

tion as a function of ~k and ω by just Fourier transforming:

G0(~k, ω) =

∫
d(t− t′)eiω(t−t′)G0(~k, t− t′) (2.32)

Use the previous result to evaluate this function. Hint: You have to be careful

23There are no experiments in which a cause preceeds an action...
24That is, by treating the fields as dynamical objects, instead of the creation and annihila-

tion operators.
25A functional is a map that associates a number with each function of one kind
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about evaluating integrals of the type:

lim
δ→0+

∫ +∞

0

dzeizt−δt = lim
δ→0+

1

z + iδ
(2.33)

Verify that this integral is the definition of the Dirac delta when the limit is
applied. Show that the limit differs depending on the sign of t− t′.

2) Electrons in a gas interact via Coulomb interaction, expressed in equa-
tion (2.3). Fourier transform this expression in 1D, 2D, and 3D. Is there any

peculiarity in these cases? Verify that the Yukawa potential V (r) = K e−λr

r has
a well defined Fourier transform in 3D. (K is a constant to provide correct units)
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3 Approximation methods

3.1 Failure of ordinary perturbation theory

All is ok if we want to study non-interacting systems, since we have seen that we
can compute some properties without too much effort. However, we know that
real systems do include interactions between constituents. From a hamiltonian
like (2.17), we can use ordinary perturbation techniques to see how the second
term changes the ground state energy.

From quantum mechanics, the corrections to the ground state energy of a
system can be expressed as:

EGS = E0 + λ〈GS|V̂ |GS〉+
λ2

2

∑
n

|〈n|V̂ |GS〉|2

En − E0
+ ... (3.1)

However, the second term in perturbation already contains a sum over all many
-body states |n〉, and, meanwhile the first term looks reasonable to calculate,
the second term doesn’t. This fact gives a reason why ordinary perturbation
theory has to fail in treating many-body systems. Simply, the number of states
we would need to include is huge even to reach a second order correction.

The solution to that problem has to be with the inclusion of a new parame-
ter in the description, which we have already anticipated previously. The time
evolution can give an idea about how a non-interacting ground state evolves to
the interacting one.26

However, to go a bit further we need to say a few words about the different
representations in quantum mechanics.

3.2 Three pictures of quantum mechanics

3.2.1 Schrodinger picture

In ordinary quantum mechanics, the time evolution of the system is described
by the Schrodinger equation (h̄ = 1):

i∂tψ(~r, t) = Ĥψ(~r, t) (3.2)

26Anticipating a bit, we will say that there is a theorem relating both ground states of the
interacting system and the non-interacting one, known as the Gell-Mann and Low theorem.
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where the wavefunction depends explicitly on time. Moreover, if the hamilto-
nian doesn’t depend on time, then the spatial and time parts of the wavefunction
factorize:

ψ(~r, t) = φ(~r)e−iEt (3.3)

In Dirac notation, equation (3.2) can be easily solved to give:

|ψ(t)〉 = e−iĤt|ψ(0)〉 (3.4)

That is, the operator e−iĤt evolves or propagates the state |ψ(0)〉 to a later
time. Thus, we have seen that in the Schrodinger picture, operators do not
depend on time, but states do.

3.2.2 Heisenberg picture

Let us now take the average value of some operator over the state |ψ(t)〉, that is:

〈ψ(t)|Â|ψ(t)〉 = 〈ψ(0)|eiĤtÂe−iĤt|ψ(0)〉 (3.5)

Look at this expression. We can interpret it in two ways. The first is the usual
Schrodinger picture we described above, where Â is an operator that doesn’t
depend on time explicitly. All the time dependence is found in the states.

But, there is another view we can take here. We can name our operator
Â = Â(t) by identifying:

Â(t) = eiĤtÂe−iĤt (3.6)

and the state is taken as |ψ(0)〉. Having done that, the dynamical quantity is
now the operator itself, and the states remain frozen in an initial time. This
picture is known as the Heisenberg picture, and it provides exactly the same
results as the Schrodinger picture.

However, if the states are no longer dynamical objects in this picture, what
happens with Schrodinger equation (3.2)? There is indeed an Schrodinger equa-
tion analog for the Heisenberg case, however, its form differs from (3.2). We
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have to remember that in this picture, the objects evolving in time are the op-
erators. Since the Schrodinger equation involves a first time derivative for the
states, let us calculate the time derivate for the operator Â(t):

dÂ

dt
(t) = (iĤ)eiĤtÂe−iĤt + eiĤtÂ(−iĤ)e−iĤt

dÂ

dt
(t) = −i[Â(t), Ĥ] (3.7)

This is the form of the Schrodinger equation in the Heisenberg picture, de-
scribing the time evolution of the operator Â. One important fact about this
equation (and that makes the Heisenberg picture more useful in some cases) is
that we can easily observe conserved quantities by just seeing how the operator
commutes with H. If one operator commutes with the total hamiltonian, then:

dÂ

dt
(t) = 0 (3.8)

the quantity described by the operator Â is a conserved quantity, that is, it
doesn’t evolve in time. To describe many body systems, it is easy to convince
oneself that the Heisenberg picture provides a better tool, since the time evo-
lution of a whole many body state is something difficult to deal with. When
calculating correlation functions, we will be working in the Heisenberg picture,
and that is something we anticipated before.

We can justify equation (2.31) knowing this. Lets go even further, an cal-
culate the time dependence of the annihilation operator in a non-interacting
fermionic system, where:

Ĥ =
∑
k

εkc
†
k(t)ck(t) (3.9)

To see that, we evaluate how this operator acts on the many-boy state:

ck(t)|FS〉 = eiĤtcke
−iĤt|FS〉 (3.10)

This state is the Fermi sea we have found before. Since it is an eigenstate of
the hamiltonian, the exponential operator is changed in the argument by its
eigenvalue:

eiĤtcke
−iEF t|FS〉 (3.11)
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Now the first exponential is just a factor. When we act with ck over the Fermi
sea, the total energy is lowered by a factor εk, that is, we remove a single mode,
but the remaining state is still an eigenvector of the operator Ĥ. Then, when
we act with the first exponential, we have:

ei(EF−εk)tcke
−iEF t|FS〉 = cke

−iεkt|FS〉 (3.12)

so we can deduce that the annihilation operator in Heisenberg picture is:

ck(t) = e−iεktck (3.13)

that is, it oscillates in time an destroys a mode of energy εk.

3.2.3 Interaction picture

Another way of expressing operators and states is the interaction picture. In
fact, this picture is the most important one when all is about calculating Green
functions perturbatively. There are two important comments to make about
this picture: First, operators depend on time, but in a different way than in
Heisenberg picture. Second, states depend on time too!

To see this dependence, consider the many-body hamiltonian in our problem
divided into a non-interacting part H0 and the interacting part V :

H = H0 + V (3.14)

We have omitted the hats, but it should be clear we are working with operators.
Usually, V will not commute with H0, and that is assumed here. Coming back
to (3.5):

〈ψ(t)|Â|ψ(t)〉 = 〈ψ(0)|eiHtÂe−iHt|ψ(0)〉 (3.15)

We can now multiply inside by I = e−iH0teiH0t, the identity operator, so that:

〈ψ(t)|Â|ψ(t)〉 = 〈ψ(0)|eiHte−iH0t(eiH0tÂe−iH0t)eiH0te−iHt|ψ(0)〉 (3.16)
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Now identify:

ÂI(t) = eiH0tÂe−iH0t

|ψ(t)〉I = eiH0te−iHt|ψ(0)〉 (3.17)

where the index I just reminds us that we are in the interaction representa-
tion. We see that, in this representation, the operators evolve in time as in
the Heisenberg picture. But there is a slightly difference: they evolve in time
under a non-interacting hamiltonian (compare with equation (3.6)). Since now
the states depend on time, we can calculate the variation in time to set up an
analog of Schrodinger’s equation in this picture. The result is left as an exercise
at the end of the chapter, and gives:

∂t|ψ(t)〉I = −iV̂ (t)|ψ(t)〉I (3.18)

where the operator V̂ (t) is defined as in (3.17). We see that, within this pic-
ture, the many-body states evolve only under the action of interactions, that is,
interactions are responsible of the dynamics of the states.

Another great advantage is that, when dealing with operators, these evolve
free, since acording to (3.7), the dynamics would be governed by H0 in this case.
Thus, if an operator commutes with the non-interacting part of the hamiltonian,
that operator will be a conserved quantity in the interaction representation.

The interaction representation is very useful to stablish a perturbation the-
ory consistent with the many-body formalism. Our next subsection will just
give brief tips about how perturbation theory works in many-body physics. For
an extended version and detailed treatment, I refer the reader to G.Mahan,
”Many Particle Physics”, an excellent reference book for many body theory.

3.3 Many Body Perturbation Theory

There is an extense and detailed way of introducing perturbation theory for
many body systems (G.Mahan) that we won’t enter here. Instead, we will focus
on the main expressions and the meaning of building up such a technique, and
why we may find it useful.

First of all, we have seen that there are three pictures of quantum mechanics.
We can deduce now why the interaction picture provides a better way to work
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out a perturbation theory: Since the operators only depend on H0, their evo-
lution its only given by the non-interacting part of the hamiltonian. Knowing
that, we can act with that operators over the non-interacting states to build
up terms higher and higher in perturbation. The recipe is the same as with
ordinary perturbation theory, the difference lays in the many-body aspects of
the problem.

How can we define the interacting ground state of a system? This question
is answered in a theorem derived by Gell-Mann and Low, which states that the
ground state of an interacting system is related to the non-interacting ground
state by:

|Ψ(0)〉 = S(0,−∞)|φ0〉 (3.19)

Here, |φ0〉 denotes the non-interacting ground state of the system, and S(0,−∞)
is an operator (called the S matrix), that drives the state to the interacting
ground state at zero time |Ψ(0)〉.

There is an important comment to do here. This theorem only applies if
interactions in the system are switched on adiabatically (remember the Landau-
Fermi liquid theory), that is, in a sufficiently smooth way. Also, it only relates
the zero temperature ground states.

What is the operator S? It remind us a bit the operator e−iHt we found pre-
viously in (3.4). It is not the same, but there exists some relationship between
them. Consider the Schrodinger equation (3.18). Its solution can be expressed
as:

|ψ(t)〉I = Û(t)|ψ(0)〉I (3.20)

where we define:

Û(t) = Te−i
∫ t
0
dt1V̂ (t1) (3.21)

This is a very poor way of deriving this operator, which in fact can be identified
from (3.17) as:

Û(t) = eiH0te−iHt (3.22)

The equivalence of both expressions is derived in detail in Mahan. The appeare-
ance of the time ordering operator T comes out directly from the proof, and we
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have seen previously the definition of that operator when we discussed Green
functions. There are some nice properties about this operator. One of them is
that it is unitary:

Û†(t)Û(t) = I (3.23)

With that operator, we can define another called the S matrix:

S(t, t′) = U(t)U†(t′) (3.24)

Then, this operator can be defined as:

S(t, t′) = Te−i
∫ t
t′ dt1V̂ (t1) (3.25)

This operator is in fact the one appearing in the theorem we described above.
The S matrix operator evolves the state from two different times t′ and t,
whereas the time ordering operator T ensures correct order in the expression.

We can then define the operator in the far away past and far away future:

S(+∞,−∞) = Te−i
∫ +∞
−∞ dt1V̂ (t1) (3.26)

which admits a series expansion characteristic of the exponential:

S(+∞,−∞) =
∞∑
n=0

(−i)n

n!

∫ +∞

−∞
dt1...

∫ +∞

−∞
dtnT̂ V̂ (t1)...V̂ (tn) (3.27)

This is in fact the important term appearing in perturbation theory in QFT.
It can be proved (Mahan) how the following expression is found for the single
particle Green function:

G(k, k′, t, t′) = −i 0〈T̂ ck(t)c†k′(t
′)S(+∞,−∞)〉0

0〈T̂ S(+∞,−∞)〉0
(3.28)

The derivation of the expression is not as important as its understanding. Both
numerator and denominator are taken in average respect to the non interact-
ing ground state (as expected since it is the only thing we know before doing
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perturbation theory). The S matrix can be expressed in series as in (3.27),
therefore, the nth term of the series represents the nth order of perturbation.
Also, in this expression, all operators are in the interaction picture, which
means that they evolve freely with the non-interacting hamiltonian.

We will say here that the denominator is not important at all. In fact, it
turns out that it cancels with some parts of the numerator27.

The best way to understand how this works is with an example. We come
back to our known case of a non-interacting gas of fermions. Lets consider the
interacting term in (2.17) as a perturbation. We know that the non-interacting
ground state for this system is the Fermi sea, where all energy states below
the Fermi level are occupied. Lets also forget about the spin index since the
interaction doesn’t depend on the spin.

The zeroth order of perturbation doesn’t contain any interacting term, and
therefore, for the single particle Green’s function is just the non interacting part:

G0(k, t) = −i〈FS|Tck(t)c†k(0)|FS〉 (3.29)

We have directly changed the momentum to be only k since we know it has to
be conserved, and time runs from 0 to t. All is known here, as this expression
has been derived in the previous section.

Lets compute the first order term. From the expansion of the S matrix, this
reads:

G(1) = −i
∑
q,k1,k2

(−i)V (q)

∫ +∞

−∞
dt1〈FS|Tck(t)c†k1+q(t1)c†k2−q(t1)...

...ck1(t1)ck2(t2)c†k′(0)|FS〉 (3.30)

The issue here is to evaluate the bracket:

〈FS|Tck(t)c†k1+q(t1)c†k2−q(t1)ck1(t1)ck2(t2)c†k′(0)|FS〉 (3.31)

To do that, there is another theorem that allows us to split the bracket into sin-
gle particle Green functions (the non-interacting ones). It is known as Wick’s

27This is called the vacuum polarization, and represents all non-connected diagrams of the
expansion. It comes clearer when Feynmann diagrams are introduced, however, we will limit
here to practical purposes and we will just omit this term in the following.
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theorem:Within a non-interacting system, the bracket written above is equiva-
lent to the product of non-interacting Green function in all possible ways we can
combine them.

We have three creation and three annihilation operators, so we can divide
the bracket in a product of three non-interacting Green functions. If we would
have had three creation operators and a different number of annihilation oper-
ators, the theorem won’t hold and we have to go to the appropiate order where
the number of them is the same.

Take the first pairing without moving the operators. That is equivalent ac-
cording to the theorem to:

〈Tck(t)c†k1+q(t1)〉〈Tc†k2−q(t1)ck1(t1)〉〈Tck2(t1)c†k′(0)〉 (3.32)

All averages are taken respect to the non-interacting ground state |FS〉, where
only the theorem applies. If we swap the operators of the second bracket, a
minus sign appear, so we have:

〈Tc†k2−q(t1)ck1(t1)〉 = −〈Tck1(t1)c†k2−q(t1)〉 (3.33)

Remember this can only be done for equal time operators. Momentum has to
be conserved in all the brackets, which gives the conditions:

k = k1 + q k2 − q = k1 k2 = k′ (3.34)

Which is equivalent to say:

q = 0 k = k′ (3.35)

Therefore, we have found the first term:

G(1)(k, t) = −V (q = 0)

∫ +∞

−∞
dt1〈Tck(t)c†k(t1)〉〈Tck(t1)c†k(t1)〉〈Tck(t1)c†k(0)〉

Looking at the brackets, we see that this is a product of non-interacting Green
functions, which are already known. The Green function evaluated at equal
time:

G(t, 0−) = −i〈c†k(t1)ck(t1)〉 = −iθ(kF − k) (3.36)
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removes the ambiguity by taking the normal order of the operators, so the result
is the occupation factor or number operator nk, which can be expressed as a
step function for values of k ≤ kF .

The meaning of the above equation is the following: An intergration over
intermediate times is performed to calculate the first order correction. What
we are integrating is the probability amplitude of the particle with momentum
k propagating towards time t from the origin of time. Our expression can be
written:

G(1)(k, t) = −V (q = 0)

∫ +∞

−∞
dt1(i)3G0(k, t− t1)G0(k, 0−)G0(k, t1) (3.37)

The i3 = −i factor comes from the definition of the Green functions. In most
cases, this expression is more useful if we Fourier transform it to frecuency (en-
ergy) space:

G(k, ω) =

∫ +∞

−∞
dteiωtG(k, t) (3.38)

In this representation, the Green function is, in first order of perturbation:

G(1)(k, ω) = iV (q = 0)θ(kF − k)G2
0(k, ω) (3.39)

We have to say something about the term calculated here. Although being fi-
nite, it is of no interest, since the q = 0 case corresponds to the case where there
is no momentum exchange. In other words, there is no direct interaction of the
particle at later times. In terms of Feynmann diagrams, that means that this
term of interaction is represented by a either non-connected diagram or a con-
nected one but with zero contribution to the energy of the particle propagating.

It is time now to say another thing about the perturbation technique. In
momentum-energy representation, as we have above, there exists an equation
which gives the exact result for G, the total Green function of the interacting
system. This is Dyson’s equation:

G(k, ω) = G0(k, ω) +G0(k, ω)Σ(k, ω)G(k, ω) (3.40)

The quantity Σ is the self-energy, and it is unknown in principle. In fact, it
is the only difficulty found in the expression, since the G0 are known from the

38



non-interacting case. One has to be careful with the order of terms in the above
expression, since sometimes G,Σ and G0 are represented by matrices. The im-
portant bit here is to understand this equation: the self-energy is a quantity
that can be calculated at any order of perturbation, that is:

Σ(k, ω) = Σ(k, ω)(1) + Σ(k, ω)(2) + ...+ Σ(k, ω)(n) + ... (3.41)

So, at any order of perturbation, we can add more and more terms to the
total self-energy.28 We are starting to see that further comprehension of these
concepts requires the introduction of Feynmann diagrams. That is something
we will talk about in the next section.

3.4 Feynman diagrams: The world of interactions in pic-
tures

One of the central techniques in quantum field theory is based on calculating
how particles interact with each other on a microscopic level. The way these
particles interact is the central aim of Feynmann diagrams, developed by the
outstanding american physicist. He noticed that these fundamental interactions
between particles could be represented by graphs or diagrams, were interactions
are driven by particles like phonons, photons, gluons etc... depending on the
problem in question.

The true power of using these diagrams is that they serve as a useful repre-
sentation for perturbative methods like the ones described before. Each term of
perturbation theory can be described by Feynmann diagrams. Concretely, for
the non-interacting single particle Green’s function, we represent the diagram
as a single straight line, with momentum k and energy ω. We remember that,
for translationally invariant systems, momentum has to be conserved, and
for time invariant systems, energy is conserved too.

To take a look at this Feynman diagrams technique, and to get introduced
into them, please go to THE ONLINE VIDEO ON FEYNMAN DIA-
GRAMS.

28That doesn’t mean in principle that we can solve the problem exactly. In fact, perturbation
theory is only justified for small values of the coupling constant, where the interacting part
is much smaller than the non-interacting part. However, there are some cases where this
perturbative methods break down (which means the theory is non-renormalizable), giving
rise to divergences in the terms. In that cases, an alternative route to solve the problem might
be tried.
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3.5 Exercises

1)Derive equation (3.18).

2)Using Wick’s theorem, we have evaluated one of the terms of first or-
der of perturbation. The term we derived is known as the Hartree term. By
making the other possible pairing of operators, find the other term appearing in
first order of perturbation, known as the Fock term. What is the value of q here?

3)Non-connected contributions: In the two possible pairings we have done
before, we have missed more posssibilities. Try to find them out and understand
them in terms of Feynmann diagrams (next section). Convince yourself that this
diagrams are not connected and therefore, don’t contribute to Dyson’s equation.
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4 Some important impurity models

Impurity models are important in many body physics: their understanding
took a lot of effort, and some of them remained unsolved for long time. Here
we present two of the most important impurity problems: The Anderson model
and the Kondo model. We will say that both are related to each other under
certain limits of the parameters involved.29

4.1 The Anderson Model

The Anderson model appears as an explanation about why some metals develop
a Curie susceptibility, that is:

χ = A+
B

T
(4.1)

This is different of what is found in most of metals: A Pauli magnetic sus-
ceptibility is found in a metal, where there is no T dependence and therefore,
χ = A in a metal (constant). The second term of (4.1) becomes important at
low temperatures, and it is an indication that a localized magnet (single spin)
has appeared in the material.

However, there was something not considered here: If there is an impurity
of energy ε0, there is no way to form a localized magnetic moment. Suppose
ε0 > εF (the Fermi energy): then the minimum energy (ground state) for the
system should leave the impurity level empty. Therefore, in this case no local
magnetic moment forms in the system.

For the case when ε0 < εF , the minimum energy state will put two electrons
in the impurity level. However, we know that the wavefunction there has to be
antisymmetric. Since the spatial part is symmetric for a d orbital, it is the spin
part the one who has to be antisymmetric:

|Φ〉 =
1√
2

(| ↑↓〉 − | ↓↑〉) (4.2)

therefore the impurity forms a singlet, so that the total spin is 0. In either case,
it looks like a single impurity embebbed in the material doesn’t develop a Curie
term in the susceptibility, that is, the impurity is always non-magnetic. The
part missed here is that the double occupancy from the impurity also contains a
Coulomb interaction U between electrons. This was first realised by Anderson,

29This was shown by Schrieffer and Wolff in a paper in 1966
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and the model:

H =
∑
kσ

εkc
†
k,σck,σ + ε0d

†d+
∑
k,σ

Vk
(
c†k,σd+ h.c

)
+ Und,↑nd,↓ (4.3)

is known as the Anderson model. This model describes the interaction of sur-
rounding electrons with an impurity site. When this impurity site is doubly
occupied, there is a cost in energy U , since electrons in the impurity interact
via Coulomb interactions. The term with Vk is known as the hybridization term.
It allows jumps from the conduction band to the impurity, so that we remove
one electron in the band (ck) to create it in the impurity (d†), and the opposite
(the h.c part represents the hermitian conjugate, which in this case is d†ck,σ).
Usually, the parameter Vk can be considered as independent of momentum. This
model is closelly related to the Kondo problem, which will be introduced in the
next part.

The relevant energy scale of the problem is described by the hybridization
function:

∆(ω) = π
∑
k

V 2
k δ(ω − εk) (4.4)

For most calculations, the hopping parameter can be considered independent of
k, and the density of states is approximated by a constant value at the Fermi
level. Then we have ∆ = πρ(εF )V 2. In the single impurity limit (that is, when
the impurity can only be singly occupied), this function describes the broaden-
ing of the spectral function (density of states), described as a Lorentzian30:

ρ(ω) =
1

π

∆

ω2 + ∆2
(4.5)

Due to the hybridization of electrons of the impurity with the conduction elec-
trons, the density of states for the impurity broadens (there are more states
available with energies ranging from [−∆,+∆]).

4.2 The Kondo Model

We can ask ourselves what happens when we take the impurity of the Anderson
model ε0 so high in energy that a double or empty state is unlikely to happen.
In this case, the impurity can be only occupied with spin up or down. This is

30This is only in the single impurity limit, that is, when there is no interaction U present
in the model.
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the definition of a localised magnet. Therefore, the impurity becomes magnetic,
with spin 1/2. However, is it that simple? What is the hamiltonian describing
such a situation?

If we bring the impurity far enough from the Fermi sea, this localization hap-
pens, and the double and single states are now part of the high-energy manifold
of the hamiltonian. On the other hand, the low energy manifold will be de-
scribed by the up or down state in the impurity. We can’t also forget about the
conduction electrons surrounding the impurity. In fact, it is the hybridization
term of equation (4.3) the one that allows a change from the impurity to the
conduction sea, and viceversa. An effective low energy hamiltonian must then
derive in order to account virtual processes, where particles from the impurity
can virtually leave the state, to flip the spin state later or remain the same, by
interaction with one electron of the bath. Schematically, we allow processes like:

| ↑〉 → |0〉 → | ↓〉
| ↑〉 → | ↑↓〉 → | ↑〉 (4.6)

Therefore, the high-energy manifold is always visited during these virtual pro-
cesses. The aim is to tranform the Anderson hamiltonian by using a canonical
transformation:

e−SĤAe
S = ĤK (4.7)

where ĤK is the low energy effective hamiltonian, taking into account processes
like (4.4). The whole procedure can be followed through a paper in 1969 by
Schrieffer and Wolff, and the transformation is known as the Schrieffer-Wolff
transformation. The resulting hamiltonian is the Kondo hamiltonian:

HK =
∑
kσ

εkc
†
kσckσ + J

∑
k,k′,στ

c†kσck′τ~σσ,τ (0).~S (4.8)

Here, ~S represents the impurity spin operator, and ~σ = (σx, σy, σz) are the Pauli
sigma matrices. J > 0 is the coupling, proved to be antiferromagnetic by the
transformation. The analysis of the Kondo problem will require long treatment
(and of course, much more knowledge from myself!). The subject has lived for
years, and has also occupied whole books topics 31. We will limit ourselves here
to explain that this hamiltonian has caught attention from the theoretical point
of view, but intimately close to some experimental facts.

31see A.C.Hewson:The Kondo problem to heavy fermions
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The first evidence of the role of magnetic impurities in metals was shown
experimentally, when a drop to a minimum in the resistivity of some metals was
found without any explanation. It was the hamiltonan (4.6), first proposed by
Kondo, the one expected to explain this behaviour. Kondo showed that a third
order of perturbation term was necessary to explain such an effect. However,
this term contained a singularity:

ρ(3) ∼ J3 log(
T

Tk
) (4.9)

For temperatures much smaller than Tk, the theory apparently breaks down,
since the term diverges at zero temperature. This misterious logarithm remained
for over a decade without a good understanding, until Anderson, and later
Wilson, will start to develop methods of scaling in the theory, which will lead
later to the Renormalization Group technique. An exact solution of the model
was found in the 80’s by Wiegmman. However, the Kondo problem is today still
a corner stone to understand many-body impurity problems, when sometimes a
direct way of tackling them passes by finding an analogy with the hamiltonian
(4.6).
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5 References

Here are some of the many good references that you can find for a deeper insight
into the subject:

• Gerald D.Mahan: Many-particle physics is an excellent book for the sub-
ject, very complete and focused in Green functions formalism and Feyn-
man diagrams. The many-body bible.

• Fetter and Walecka: Quantum Theory of many-particle systems A very
nice book and complete for the many-body theory, with different applica-
tions in different chapters. Not suitable for quantum impurity problems.

• Piers Coleman: Introduction to many-body physics: An excellent reference
with a good insight into the underlying physics of the many-body problem,
good to study Renormalization Group concepts.

• Sam T. Carr: Quantum Field Theory II: Introduction to Feynman dia-
grams: Excellent lecture notes about Feynman diagrams and the connec-
tion with the theory of Green functions, focused on the Fermi liquid case.

• Alexander Altland and Ben Simons: Condensed Matter Field Theory :
More oriented to the field theoretic approach (Feynman path integrals,
bosonization...), but very nice to study condensed matter field theory,
and with good solved exercises at the end of each chapter.
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