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Part 1

Geometry and Topology



Chapter 1

Preliminaries

In the present chapter we are going to introduce a few basic mathematical concepts
that will be necessary in this course. We will discuss only briefly each new concept and
will stick mainly to the basic definitions, without proving anything in detail. The reason
for this is that it would take a whole course to go through the theory underlying each of
them. The good news is that we do not need the whole theory to start doing geometry.
The only prerequisites for this chapter (and for the rest of course) are calculus and linear
algebra.

1.1 Maps and Sets

From the point of view of a physicist, perhaps the most daunting aspect of differential
geometry is its comparative rigor and accompanying notation. So before diving headlong
into the subject, it might be worth spending the space of a chapter just elucidating some
of the more basic concepts and notations that can make texts on differential geometry
seem a bit alien. Hopefully it will become clear that this is simply another way of looking
at objects (like functions) which are already familiar, but allow for the concept to be
generalized.

If that seems a bit incoherent, let’s start by looking at an example. Take the function

f(z) = 2% +5. (1.1)

Now what is this actually saying? Well if we insert some value x into our function, it is
instructing us to square that value and then add five. The result is another number, so
we could take x = 1 and get 6 or x = 5 and get 30. So what is actually happening here
is that the function f is assigning a number to each value of x (also a number). Since



clearly, both belong to the real numbers R, we can think of f as a map from the space
of real numbers to the space of real numbers

[ R—R. (1.2)

We could also take a function in several variables, i.e.

f(.T,y,Z) :y—3_€3z+$_27 (13)

which is a map that takes three numbers into a single value or

fiR — R (1.4)

The symbol R? simply means that we take three copies of the real line (one for each
variable) and map it into a single number. More generally we have a function in an
arbitrary number of variables which we now denote

fiR* —R. (L.5)

We could talk further about this example, but the point here is that we have changed the
way in which we look at functions; rather than an expression in some variables, we can
see its “underlying property” as a map. This doesn’t just apply to functions, but can be
generalized to maps between any kind of (mathematical) object.

Now, let X and Y be two sets and define a map as a procedure through which we assign
toeach x € X some y € Y

f: X —Y. (1.6)

The set X is referred to as the domain and Y as the range of f. But, the map f needn’t
use up all of Y. So we have the image, which is all points in Y assigned to points in X
through f

fX)={yeY|y=fz)ze X} (1.7)

This is another bit of notation we will have to get used to. It denotes the set f(X) C Y
and can be read as: The set of all elements y in Y where each such element is given by
mapping some element x in X to Y. It may be a bit of a mouthful, but it is simply all
elements of Y that satisfy a certain condition on the right hand side of |. Returning to
our example above, if we wanted a map which assigns to each real number (domain) a
positive real (range) number we would write



f R — R>0 (18)

and define the range as the set

Rog={reR |z >0} (1.9)

whose elements are strictly greater than zero. We will look at more examples shortly, but
first let us consider some properties of maps. Firstly a map f: X — Y can have certain
properties (see Figure [L.1)):

(b)

Figure 1.1: a) Injective function, b) surjective function and c¢) bijective function.

e Injective (or one-to-one): Each element in the domain maps to one and only one
element of the range i.e. Vo,2' € X if x # 2’ then f(z) # f(a').

e Surjective (or onto): Each element in the domain maps to at least one element of
the range i.e. Yy € Y there exists at least one x € X such that y = f(z).

e Bijective (one-to-one correspondence): Each element in the domain maps to one
and only one element of the entire range i.e. a map f is both injective and surjective.
A map f has an inverse if and only if it is bijective.

Although a map needn’t be any of these. So, to take an example, if we let f :
R — R and f(z) = cos(x), then this function is neither injective nor surjective: Since
cos(0) = cos(2m) = cos(4dm) = --- = 1, injectivity fails, and since cos(z) only takes
values in the range from —1 to 1 so does surjectivity. However, we can define the sets
X={reR|0<z<2r}and Y = {z € R| -1 <z < 1} and take these to be the
domain and range respectively. Now the map f : X — Y is bijective, so both surjective
and injective.



Another important property is that maps can be composed: If we have f : X — Z
and g : Z — Y then we also have a map h : X — Y given by the composition

h=gof. (1.10)

Which is instructing us to first apply f followed by g. Note that this only works if the
domain of g corresponds to the range of f. For example, consider f,¢g : R — R (which
may be a bit reductive, but ought to illustrate the point) where this is clearly satisfied
and fix f, g to be the functions f(x) = cos(x) and g(x) = #* — 1. Now we can find the
composite function h = go f of some number = by h(z) = go f(x) = g(f(x)) = cos®(x)—1.

We also note the existence of inverse maps; that is for some f : X — Y there may
also (but not necessarily) exist an inverse f~' : Y — X. They can be composed
flof=fof!=id where id is the identity operator and simply maps elements of
a set back to themselves. So once again we take f : R — R as f(z) = cos(x) which also
givesus 'R — Ras f'(z) = cos }(x) and f' o f(x) = cos *(cos(z)) = =.

1.2 Morphisms

The modern way to deal with mathematics is through structures. A mathematical
structure is to be viewed as some sort of relations imposed over a set of objects (this
could be numbers, or matrices, or bananas, etc). A set A together with some structure
2 forms what we will call space and which will be denoted as an ordered pair (A4, <?).
Essentially there are two types of structures: the algebraic structures and the geometrical
ones. How to define them and consequently classify all of the mathematical structures
in these two categories is not a trivial task, but this will not bother us here. In fact, in
this course we will only assume that a structure is algebraic whenever there is a product
o between the elements of the set A, denoted (A4, o).

In this sense, the trend in mathematics is to isolate some structure from the rest and try
to understand everything about it, exhausting all of the possible definitions, theorems and
so on. The way this usually happens is through the generalization of intuitive concepts.
The idea of distance, for example, is very intuitive to all of us, but the mathematicians
have gone beyond that and have introduced a new structure called metric space, turning
the results we know from Euclidian space into axioms. This way we can get a deep
understanding of what distance is without getting confused due to other concepts that
are also present in Euclidian space.



In order to better understand some structure, we have to know when two spaces are
equivalent with respect to this structure. To this notion of equivalence we give the name
of morphism. More precisely, if A and B are two sets together with some structure, then a
morphism between A and B is a map ¢ : A — B which preserves the underlying structure.
In the special case that ¢ has an inverse ¢! : B — A that is also a morphism, we call
¢ an isomorphism. If there is an isomorphism between A and B, then A and B are said
to be isomorphic. When the structure is algebraic, a morphism ¢ : (A4,0) — (B, -) means
that

¢(aob) = ¢(a) - ¢(b),

for every a,b € A. In this case the word homomorphism is often used instead of morphism.

Example 1.2.1.

1. If A and B are sets with no structure, then any function f : A — B is a morphism.
If f is invertible, then it is an isomorphism.

2. If V and W are vector spaces, then any linear transformation 7" : V. — W is a
homomorphism.

As we go ahead in this course we will find different structures and different types of
morphisms with respect to it. Our job here is to study these structures and to identify
them in physics. By the way, this is essentially the role of mathematical physics.

1.3 Topological spaces and manifolds

One the most important concepts in mathematics and that also appears everywhere in
physics is the idea of the continuum. We assume almost everywhere in physics that the
functions are continuous, even though this is not always explicitly mentioned. The reader
might be wondering right now how we could talk about continuity if the only thing we
have is a set of numbers. The answer is in another structure called topologyﬂ.

Definition 1. Let X be a set. A topology on X is a collection T of subsets of X, called
open sets, satisfying:

a) The entire set X and the empty set O are open;

!The word topology might refer to either the structure or the field /subject itself.
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Figure 1.2: A map f:V — U. (a) f is continuous and the inverse image of U is open.
(b) f is discontinuous and the inverse image of U is not open; V includes its end points.

b) The union of any family of open sets is open;
c) The intersection of any finite family of open subsets is open.

The pair (X, 7) is called a topological space. Whenever the topology T is clear from the
context, we will write X for the topological space.

Note that the notion of open sets was not defined previously and here they appear
as mere objects belonging to a topological space. In topology, open sets are not defined
indeed, but they are characterized by the rules of the above definition. This happens
quite often in mathematics and for this reason we give these non-defined objects a name:
primitive concepts. In summary we do not know what they are but we know how to
operate them. Likewise, vector is a primitive concept, so if you cannot accept open sets
because they are not defined, always remember that you have been operating vectors since
your childhood.

Before we jump to continuity, here is an useful definition: a neighborhood of p € X
is an open set containing p. Now we are able to talk about continuity. Let X and Y be
topological spaces. A function F' : X — Y is continuous if for every open set U C Y
the preimage F~'(U) is open in X. In other words, a continuous function is simply a
function which maps open sets into open sets in the reverse direction. This is the essence
of continuity (see the illustration in . When X =Y = R, it can be proved that this
definition reduces to that one you propably have seen in your calculus course.

Further, a map (in the sense of a function) has associated to it a so-called differentia-
bility class denoted by C™. This relates to its properties under differentiation so that, for
example, a continuous map whose first order derivative is also continuous, but where the
second order isn’t, is in C'. All continuous maps are automatically in C*. All functions
whose k™ order derivatives exist and are continuous, are in C*. E.g. f(x) = |z|, which
is obviously in C°. However, its derivative f'(z) = 1 if # > 0 and f'(z) = —1 if # < 0 is
not continuous and hence is not an element of C*. Meanwhile, the function f(z) = |z|?



has first order derivative f'(x) = |z| if x > 0 and f'(z) = —|z| if z < 0 which is con-
tinuous, but its second order derivative is not. Hence |z|? is in C'. In general we have
|z|™ € C™. On the other hand, if a function is infinitely many times differentiable with
all derivatives being continuous then it is in the special class C* and is called smooth.
Examples include the ordinary exponential and trigonometric functions.

Since a continuous function maps open sets into open sets, it preserves the topology
structure. Therefore, continuous functions are the morphisms of topological spaces. The
isomorphisms in this context are called homeomorphisms (be careful, this is not the same
as the homomorphisms).

As you may have realized, topological spaces are very general spaces and this allows
us to obtain very general results as well. Unfortunately, on the other hand, they are so
general that they include some pathological cases that are not of our interest. As an
example, consider the topology 7 = {X,0} over X, formed by the entire set itself and
the empty set; this is called the trivial topology. In this case it can be proved that every
sequence converges to every point of X and that every function into X is continuous.

To avoid these cases, which appears when X does not have enough subspaces, the
following additional axiom is often assumed. For every pair of different points p,q € X,
there exist disjoint open subsets U,V C X (i.e., UN V) such that p € U and ¢ € V.
Topological spaces that satisfy this axiom are called Hausdorff topological space or simply
Hausdorff space.

A topological manifold M of dimension n is a Hausdorff topological space M which for
every point p € M there exists a neighborhood of p homeomorphic to an open set of R".
Intuitively speaking, this means that every neighborhood of M looks like the usual real
space.

1.4 Tensors

It is impossible to overstress the usefulness of tensors for us. In mathematics they play
a very important role in a broad range of fields, specially in geometry. In physics they
appear everywhere as well, from moment of inertia to quantum field theory. Sadly tensors
are still poorly introduced in physics through its components and as objects defined by
some transformation. This leads to a lot of misconceptions and confusions. Here we will
introduce them in an abstract way, without using coordinates, and then show that when
we pick up some coordinate frame we get the usual formulas used in the physics literature.

Before anything, it is important to be clear concerning notations. We are going to use
subscripts in vectors and superscript in coordinates of vectors whenever necessary. On
the other hand, dual vectors will receive superscripts and its coordinates subscripts. In
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addition, we will use Einstein notation when summing over indices, that is, we will sum
over repeated indices and will omit the sum sign. So for example, in a basis {e;} a vector
will be expressed as v = v'e;, while in a basis {¢/} a dual vector will be expressed as
w = wle;.

From linear algebra we know that a linear functional is a map 7": V' — R from a vector
space V' to the real numbers which satisfies linearity:

T(au+ pv) =T (u)+ pT(v), a,fE€R u,veV.

Now let Vi,...,V, be vector spaces. A multilinear mapisamapT :V; x...xV, - R
which satisfies linearity in each of its components. Multilinear maps can also be added
and multiplied by scalars:

(aT 4+ bS)(vy,...,v,) = aT(vy,...,v,) +bS(vy,...,0,).
Therefore, the set of all multilinear maps also forms a vector space itself, denoted
Vie...eV”

and called tensor product of dual spaces. Now let’s consider s copies of a vector space V
and r copies of its dual V™, that is,

T:V'®..VeV®...V >R

Vv vV
r times s times

These multilinear maps are called tensors of type (r,s) on V. Since the dual of the dual
space V™ is isomorphic to V' (prove it), the vector space of tensors can be written as

V=2V, Vel ®...e V",

vV vV
r times s times

We usually set V9 to be the real line R and hence the tensors in this case are scalars.
For V) = V* we have the usual linear functionals already found in linear algebra (also
called covectors) and for V10 =V we have the ordinary vector space.

Let T and S be tensors of type (r,s) and (p,q) respectively. We define the tensor
product between them as the tensor of type (r + p, s + ¢) given by

TR S(Wis ey Wy Pryeeey Py Uty ey Ug, V1 - .y VUg)

=T (Wi, wWry Uty Us)S(P1, ooy Py Vs - -, ).
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Exercise 1.4.1. Show that the tensor product is indeed a tensor by showing it is linear
in all of its arguments.

Up to now we have not introduced any coordinates. In physics languange, this means
that everything at this point does not depend on the observer. Now we are going to
introduce such coordinates, but always bear in mind that this is just a way to express
a tensor in that special coordinate system. Naturally the tensor coordinates will change
from one coordinate system to another, but this does not mean that the tensor itself is
changing. It is redundant to prove this (and you will not find any serious book proving
it) because the tensor is not defined using coordinates. So let’s say {e;} is a basis of V'
and {€’} a basis of V*. The set of vectors

{eq ®..Qe, @ ®...®@}

forms a basis of the vector space V"*). Therefore, any tensor T' of type (r,s) can be
expressed in this basis as

T=T/"7e®.. Q€ Q®.. Q€ (1.11)
where the coefficients are defined by T;f;sr =T(e",...,€" €j,...,ej.). These coefficients

are what physicists usually call tensor, but as you can see, they are actually obtained when
the actual tensors are expressed in a coordinate basis.

After introducing coordinates, the next natural question is: how the coefficients of T
expressed in different basis are related to each other? Or physically, how do we compare
the physical quantity 7' measured by different observers? Let {e;} and {€}} be two

different bases of V. They are related by the changing basis matrix A = [A]]:

e; = AFel. (1.12)
The dual vectors transform ad? . .

¢ = Al (1.13)
where A” are the components of the inverse matrix A~'. Using Equations and

[L13) in (T11) we get

T:T?l'“?reil ®"'®€ir ®€‘j1 ®®€7$

J1---Js

_ mir.dr AR kr Al71 191 ! / my m
=T r AL CATADL AT e, @ ®e, M. Q™

tky.. kyr 1 ! / 'ms
=T ey, ®@.. Q¢ e™@...0e™,

mi...Mg

2The fact that the dual vectors transform with the inverse of the changing basis matrix is a result
from Linear Algebra. If you do not remember that I encourage you to try to prove it.
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where the unprimed coefficients are the components of T' with respect to the basis {e;} and
the primed ones are the components of T" with respect to {e;}. Therefore, the components
of the tensor T' transform as

tk..kr 21...0 k1 kr 191 191
Thike — it gl Ak g A (1.14)

And this is the “definition” of tensors one encounters in physics.

Example 1.4.1. We will see on Chapter [4] that a metric g is a tensor of type (0,2). So
if {¢'} is a basis for V* we can write

In this case, Equation becomes

9ij = Gmn AT AJ.

13



Chapter 2

Homotopy groups

Mathematically, the classification of topological defects is done with the use of homo-
topy groups, which are part of a huge mathematics field known as Algebraic Topology,
whose aim is to use algebra to study topological problems.

Then naturally, before learning about the physics of topological defects, we have to
introduce some tools from the homotopy theory.

2.1 Fundamental groups

Let o : I = [0,1] — X be a curve in X such that a(0) = a(1) = xy. Such curves
are called loops based at xq. It is possible to endow the set of all of these loops with an
algebraic structure as follows.

Definition 2. Let o, 5 : I — X be loops such that (1) = [(0). The product af is
defined as:

a(2s),
af(s) = 2
E(QS— 1)7

IN
IN

1
S —
27
< s <1

| = D

Geometrically, this definition corresponds to the curve obtained by traversing the image
of o and then the image of 5. It is straightforward to show that the loop af is continuous
since a(1) = 5(0).

To proceed with the construction of the algebraic structure, we also have to define the
inverse and the identity elements. With the last definition in mind it is natural to define
a!(s) = a(1—s), for each s € I, which corresponds to traversing the loop « in the other

14



way around. Finally, the identity element is defined by c,(s) = z, i.e., the image ¢, () is
a single point.

These definitions could suggest that o 'a = aa™! = ¢,, however this is not true as
can be easily verified. To manage this problem we need the concept of homotopy.

1

Definition 3. A homotopy in xy is a continous function h : I x I — X such that:

ho(s) = a(s), hi(s)=p(s), Vsel, (2.1)
he(0) = hy(1) =z, Vtel,

where a and B are loops based at xo. Then we say that there exists a homotopy between «
and B based at xy, written o ~ (3. In this conditions, o and [ are said to be homotopic.

In other words, two loops are homotopic if they can be continuously deformed to each
other.

Remarkably, the relation @ ~ [ is an equivalence relation and its equivalence class
la] = {Bla ~ B} is called the homotopic class of . In fact, the relation ~ satisfies the
properties:

- Reflexivity: « ~ a. The homotopy can be given by h;(s) = a(s) for any € I.

- Symmetry: Let a ~  with the homotopy h:(s) such that ho(s) = a(s) and hi(s) =
B(s). Then § ~ «, where the homotopy is given by hi_(s).

- Transitivity: Let a ~ § and 8 ~ 7. Then o ~ 7. In fact, if fi(s) is a homotopy
between v and f and g,(s) is a homotopy between § and v, a homotopy between o and
~ can be given by

f?t(s)v

got—1 (S)a

<t<
ht(S) =

—_ N

<t

| = D
(VAN

Equipped with the set of homotopy classes at x, denoted by 7 (X, x), and defining the
operation [a][f] = [af], we get the so called fundamental group. The fundamental group
is a group indeed, since it satisfies all of the axioms of a group:

- Associativity: A homotopy fi(s) between (a3)y and «(fS7) can be given by

4s 1+t
<sg<< ——
O‘(1+t)’ Oss<——
14+t 94t
fils)={ Bls—t—1), %<s§%,
4s —t — 2 2+t
<s<1
\7( — ) Hoae
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Therefore, we can simply write [« 7] to denote [(a5)7] ou [a(57)].
- Identity element: Define a homotopy as

Clearly this is a homotopy between ac, and «. Analogously, a homotopy between c,«
and « is given by

This show that [a|[c,] = [c.][a] = [a].
- Inverse: Define a homotopy f;(s) by

1
a(2s(1 —1t)), 0<s< -,
hi(s) = 1 2
a(2(1 —s)(1 —1t)), 3 <s < 1.
Naturally, fo(s) = aa™" and fi(s) = ¢, and, consequently,
[aa™"] = [a]la™] = [ea].
This shows that [a™'] = [a] .
Briefly, the fundamental group 7 (X, zg) is the group formed by all of the homotopy
classes at x, where [c,] is the identity element and, given [a], [a]™' = [a™'] is its inverse
element.

2.2 Properties of the fundamental group

In this section some of the most important properties of the fundamental group will
be presented. It is worth noting that the fundamental group was built considering very
broad conditions. Nonetheless, if we restrict our attention to some more specific cases
(but still general enough to have an enormous applicability) we could be able to prove
interesting properties.

16



In this sense, consider a path connected topological space X (i.e., a space which any
two points zg, x; € X can be connected by a continuous curve « such that a(0) = z¢ and
a(l) = z1). It is possible to show that there exists an isomorphism between (X, o)
and 71 (X, z1). The proof is out of the scope of this course and can be found in any
introductory book about homotopy. With this result, we can omit the base point of the
homotopy in path connected spaces and simply write 1 (X).

The homotopy of loops can be easily generalized to continuous functions. Let X, Y
be topological spaces and f,g : X — Y be continuous functions. If there exists another
continuous function F': X x I — Y such that F/(z,0) = f(z) and F(z,1) = g(z), then we
say that f is homotopic to g and we denote f ~ g. The function F' is called the homotopy
between f and g.

Two topological spaces X and Y are of the same homotopy type, denoted X ~ Y if
there are continuous functions f : X — Y and ¢ : Y — X such that f o g ~ idy and
go [ ~idx. The function f is called homotopy equivalence and g is its inverse.

Now it is possible to state one of the most important properties of this section: if
f X — Y is a homotopy equivalence between X and Y, 7 (X, zg) is isomorphic to
m1(Y, f(xo)). As a colorary we have that the fundamental group is invariant under home-
omorphisms, i.e., it is a topological invariant.

In this sense, fundamental groups classify topological spaces in a less restrict way than
homeomorphisms do. Nevertheless, it is necessary to emphasize that fundamental groups
are used in physics to classify maps and field configurations instead of topological spaces.

2.3 Examples of fundamental groups

Although there are no systematic procedure to calculate the fundamental group, it is
possible to find it in some specific cases through some simple considerations.

In the case of a circumference S! the fundamental group is isomorphic to the integers:
m1(X) = Z. Although the proof of this claim is not so obvious (see |B9)|), its outcome can
be easily understood. Let’s supose that we encircle a cylinder with an elastic band. If the
elastic band encircles the cylinder n times, then this configuration cannot be continuously
deformed in another which encircles the cylinder m # n times. Moreover, if the elastic
band encircles the cylinder n times and then m times, it encircles the cylinder n+m times
in total.

Another interesting topological space is the real projective line RP! which is the topo-
logical space made through the identification of the points of a circumference to its respec-
tive antipodes. This space can be thought of as the semicircle with indentified ends. For
this reason, the real projective line RP! is topologically equivalent to the circumference

17



S'. Therefore, its fundamental group is also isomorphic to the integers:
7 (RPY) = Z.

Besides RP!, there are other spaces defined analogously but with higher dimensions.
To these spaces we give the name of real projective space RP". In the same way as before,
RP" is obtained by the identification of p and —p for each p € S™. However, in this case
RP" is not topologically equivalent to S™. In fact, its fundamental group is

T (RP") = Zy, n>1,

where Z; = {0,1} represents the quotient space of Z by the equivalence relation x =
y (mod 2), i.e., Zs is the set of the equivalent classes

a = [a] = {z|x = a(mod 2)}.

As a result, the operation z = y (mod 2) divide the integers in two classes: the odd and
even numbers.

One class of important topological spaces is the one obtained by the cartesian product
of other spaces. In these cases, we have that if X and Y are topological spaces, then

(X XY, (20, 40)) = (X, 20) ® m1(Y, %0), (2.3)

where @ represents the direct sum. To prove this statement, let’s define the projections
pr:X XY > Xandpy: X XY =Y. Ifaisaloopin X x Y at the point (z¢,yo), then
a; = pi(«) is a loop in X at zg and ay = py(«) is a loop in Y at yg. Reciprocally, any
pair of loops a; of X at zy and ay of Y at yg determine an unique loop o = (aq, ) of
X x Y at (zg,y0). Define a homomorphism

¢ 7T1(X XY, (x0,%0)) — 7T1(Xa o) @Wl(YJJo)
o([o]) = o([a]) = ([aa], [2])-

By construction ¢ has inverse, hence ¢ is the isomorphism we were looking for.
As an application of this result, we have that the fundamental group of the torus
T? = S' x S is:
m(T) 2mSHem(SH2ZoZ

Another example is the cylinder X = S x R which has the fundamental group

m(X)2Z&{e} 27

18



Up to this point we have seen the basics about homotopy to start doing physics.
We could go further and generalize all of this to higher dimensions. To do so, instead
of considering the fundamental group (X ), we would define the nth homotopy group
(X)) as the group that classifies n-loops a : I"™ — X, where I" denotes the n-cube
Ix---x1I. For n =2, for example, mo(X) would classify the homotopy classes of spheres
in X. As our goal here is not to explain the whole theory of homotopy in detail, we leave
some good references for the interested reader |A1],B9.
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Chapter 3

Differential Topology

3.1 Charts and Coordinates

The notion of a topological space ought to be clear and is the starting point to define
smooth manifolds. If what we want to do is study physics, which we take to mean the
motions of particles, simply specifying a topology doesn’t get us very far. In order to
introduce and generalize such things as velocity and acceleration, we need some sort of
differential structure, that is to say we need to figure out how to translate our usual flat
space calculus to some arbitrary curved space. A manifold is a type of topology that
in the neighborhood of each point looks like Euclidean (or in physics Minkowski) space.
This is an extremely important property as it will allow us to endow our space a so-called
coordinate chart which gives us access to the differential structure and apply our nor-
mal calculus developed in flat space. Why is this important? Conventionally, we are used
to being able to visualize (so essentially to draw pictures of) the physical process we are
interested in. What this equates to is being able to frame quantities like momentum and
position relative to some coordinate axis (so we can specify everything in terms of x,y
and z (and possibly ¢) coordinates). And indeed, we know that at a given scale, we can
describe everything in terms of this simple 3D Euclidean (or 4D Minkowski) coordinate
system. This may sound familiar as the equivalence principle in GR. What this means is
that any space can be considered to be flat at small enough scales, or to put it differently,
every space looks locally Euclidean (or Minkowski). Another important aspect, is that
this gives us a notions of calculus on a manifold since it is, at these sufficiently small
scales, simply the same calculus we are familiar with (that is, the calculus of R").
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However, a manifoldm isn’t simply isomorphic to R". Rather, we use something called
an Atlas which is a set of pairs {(U;,v;)}. We denote by M a topological space which is
called a manifold if it has

e U; an open subset U; C M which satisfies U U; = M. So the union of all subsets
cover the entire manifold '
e ¢); a homeomorphism into an open subset of R" so that ; : U; — ¢¥(U;) C R"

e Given a nonempty intersection U; NU; # (), there exists a transition function ¢;; :
R™ — R" or, more precisely ¢;; : ¢;(U; NU;) — 1;(U;NU;), given by ¢;; = ;017 .
¢;; which is also a homeomorphism.

See the illustration in (3.1)). So, if we take a point on an m-dimensional manifold p € U; C
M, a map v; assigns m coordinate values {z*} where 1 < u < m . So think of labeling
each point with coordinates (z,y,z---). Meanwhile if p € U; N Uj, ¢; assigns {«"} and
1, assigns {y”} where 1 < p, v < m, the transition functions relating = to y are functions
in m variables of the form a* = z#(y). Moreover, for physics there are particular classes
of manifolds that are interesting

e Differential Manifold: A manifold whose Atlases are equipped with transition
functions that are differentiable i.e. ¢ € C*

e Smooth Manifold: Same as a differential manifold, but the transition functions
are smooth: ¢ € C*°

We will be concentrating on the latter since all examples we will encounter here are
going to be of smooth manifolds. Let’s illustrate this by looking at a more heuristic ex-
ample: the two sphere - S%.

We take S? with unit radius embedded in R* where points are labeled by (z,y,2). A
sphere is denoted as S? = {(x,y, z) € R* | 22 +-y* + 2> = 1} so all points equidistant from
the origin (0,0,0). Now, since the sphere is a two dimensional surface, we want a map
into R?, where points are labeled as (X,Y), so that we need ¢; : S* — R?, a function
taking points on the sphere to the plane. There are many different ways of doing this;

!Along the rest of this chapter manifolds will mean differentiable/smooth manifolds. Do not get
confused with the more general notion of a topological manifold introduced in Chapter
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Figure 3.1: Illustration of an Atlas: The charts ¢y and 5 map the open subsets U; and
Us into R™ and R". In the nonempty intersection U; N Uy one has transition functions
¢12 = @51 between charts.

one is so-called stereographic projection (see . We take the plane to lie at the height of
the sphere’s equator perpendicular to the z-axis and project from the north pole (0,0, 1),
denoting this map ¢y which relates points as
T oy=-_Y
1—2z 1—=z
Notice however, 1y is not well defined at the north pole where z = 1. That means our
open set Uy cannot be all of S?, but rather must be a subset excluding that point. So we
have a set Uy = {S? —north pole}. To cover the entire sphere, we need at least one more
open set El which includes the north pole. A simple choice is the south pole at (0,0, —1),
though we could choose any other as long as it results in a chart which includes (0,0, 1).
Similar to before this gives a set Us = {S* — north pole} with chart

X = (3.1)

y_ T f_ Y

142’ 1+ 2’

covering all of the sphere except the south pole. In summary we have two projective
charts on the sphere mapping into the subsets

(3.2)

%In fact, a two sphere can never be coordinated by less than two charts. If it could, it would be
homeomorphic to (i.e. the same as) the plane.
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Figure 3.2: Stereographic projection of a two-Sphere: the line originating at the north
pole intersects the sphere at a point and maps it on to the plane

xr
R? — 1
1_2,1_2)!(%%2)6 (0,0,1)},

) | (z,y,2) € R* — (0,0, —1)}.

Yn(Un) = A{(
Un(Us) = {(ma 142

The transition function ¢ng between these two charts can be found from the definition
of ¢;; by composing the above charts appropriately. They are given by

(3.3)

/ !
X2 + Y? X2 + Y2
Now, as mentioned before, there is no one way of doing this and we could choose
different coordinates entirely. A more familiar example are spherical coordinates: we take
R? to be parametrized by angles (o, ) and can find

(3.4)

a=cos '(z), B=tan"" <%> : (3.5)

or conversely

x = sin(a) cos(B), y =sin(a)sin(f), 2z = cos(a). (3.6)

The parameters (o, ) are defined over the ranges 0 < o < 7 and 0 < g < 27, so, as
with the projective chart, these coordinates don’t cover the entire sphere. Our covering
excludes all points along the z-axis at (0,0, z) since we get that 3 = tan™*(0) = co. Also
since sin(0) = sin(27) and cos(0) = cos(27) and we want the covering to be an open
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set, we exclude = 27. The end result is a single chart which covers the sphere except
for the poles and the great circle section connecting them. One could think of taking an
inflatable ball, cutting it open along one side and flattening it out. More coverings of
the entire sphere using this parametrization could be found by taking (« + 9, 5 + 7). We
can also find transition functions between our polar coordinates and stereographic ones.
These are given by (for 1y)

X = cot (%) cos(f8), Y = cot (%) sin(f). (3.7)

So we have at least two completely different coordinate systems for the sphere, though
there are many more. An everyday example of this, which also neatly demonstrates the
difficulties with choosing an appropriate mapping, can be found in every Atlas (the book
in this case). Earth, being (almost) a sphere, needs to be mapped into plane in order to
produce a map that can be drawn on a flat piece of paper. The most familiar one is the
so-called Mercator projection. This has the drawback of hugely distorting the relative
proportions of landmasses the closer they are to the poles. For example, Greenland
looks to be larger than Africa, though in actual fact the latter is about 14 times larger.
Alternatives include the Gall-Peters and Dymaxion maps, the latter being a projection
first onto a polygon (Icosahedron) and then into the plane.

You have hopefully realized that everything we have been doing here is simply an
example of coordinate transformations. Different charts are simply different coordinate
systems and the statement that they all parametrize the same topology, albeit in different
ranges, is an idea of central importance in general relativity. What we have done is to
hopefully give some different intuition for something that is already quite familiar.

3.2 Functions and Curves

Now we have established what a manifold is, the next thing is to begin to look at the
structures it can possess e.g. functions, vector fields, tensors etc. Or to put it another
way, how can one realize objects that are useful in physics within this formalism. To
begin with, we briefly return to maps, but now specifically maps between manifolds.

So, let’s take f : M — N, where M and N are manifolds of dimension m and n
respectively and a point p € M is mapped to a point f(p) € N. With a coordinate chart
(U,¢) on M and (V,0) on N such that p € U and f(p) € V, f is assigned a coordinate
representation by the composition

fo forp™t:R™ — R". (3.8)
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Figure 3.3: Functions and curves

Taking ¥ (p) = {2*} and 0(f(p)) = {y"} where 1 < pu, < m and 1 < v < n, this
is simply the function y = 6 o f oy~ (z) which can be more compactly (if not entirely
correctly) be expressed as y = f(z). Note that if f is a diffeomorphism (as previously
defined) then M and N are said to be doffeomorphic and M = N (that is, they are the
same manifold) and obviously dim(M) = dim(N).

With all of this in mind, we now move on to two special cases of mappings: Functions
and Curves. Both of these concern a mapping between a manifold M and the real
number line R. A function (that being a function on a manifold as opposed to the more
general treatment of the term in previous sections) is a map f : M — R. It has coordinate
representation f o' : R™ — R and the set of smooth functions on M is denoted by
F(M).

Conversely, a curve is amap C : R — M with coordinate representation ¢oC : R — R™.
If a curve is closed (e.g. if we identify C(0) = C(1)) it is regarded as the map C : S* — M
(S* being a circle). This is illustrated in
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3.3 Vectors and One-forms

We are now in a position to look at some more interesting objects. One may question
the purpose of the previous section, until the difficulties in defining something like a vector
become apparent. We are used to the notion of a vector as a straight arrow, but how is
this concept translated to a manifold? Where is the origin? What does it even mean for
something to be ’straight’? So, we define a vector using both a function and a curve - it
will be a tangent vector. You will hopefully remember that the derivative of a function
is always tangent to that function. Let’s take two curves C;,Co : R - M and A € R a
parameter along the curves so that, for a point p € M, we have p = C;(0) = C3(0). Then,
C; and Cy are said to be tangent if and only if

dz"(C:(A)| - _ dz"(C(N)
d\ dA

Note that while this does use a coordinate chart, if two curves are not tangent in a
particular chart, they won’t be in any intersecting chart. A tangent vector at a point p is
then the collection of all curves for which the above is satisfied. Formally referred to as
an equivalence class, as a set it is expressed as

(3.9)

A=0 A=0

dz"(Ci(N))
d\

_ da"(G(0)

1= { e 160) = ¢,0) and G

,Vz’,j} . (3.10)
A=0 A=0

So let’s be more explicit. Take a curve C : R — M parametrized once again by A and a
function f : M — R. Then find the derivative of the function along the curve and express
this in local coordinates

df(C(V)
dX

That is, we can find the derivative of a function f(C(\)) at a point A = 0 by applying an
operator

_ df da(C(N)
T oder dA

A=0

(3.11)

A=0

X =XH— (3.12)

In other words

X[f] = X* (3.13)
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Figure 3.4: Tangent vectors are defined in terms a function f and curve C

d
It is now this X which serves as our tangent vector, the —— can be thought of as

an arrow pointing along the direction of the coordinate x* araid forms a vector basis.
Furthermore, it is clearly identifiable with our basis e, from the preliminaries section.
The X*’s are then the vector components. The set of all X at a point p (the equivalence
class of all curves tangent to each other) is referred to as the tangent space and denoted
T,M. Their action is X : T,M — R™. The basis is regarded as {d:%} e T,M
Conversely we also have the notion of a dual tangent space called cotangent space,
denoted by T; M. In this case, an element n : T;M — R™ is referred to as a cotangent or
alternatively a one-form. Some notation that will become important later is Q' (M) =
T,;M. As with a general vector space, the inner product exists as the natural pairing
between T, M and Ty M so that, by denoting the basis of the latter by {dx"}, we have

<de, diy> — o, (3.14)

A general element n € T7M can be expressed as

27



n = n,dz". (3.15)

Lastly, let’s take p € U; N U; with charts assigning {«*} and {y"} respectively. Then a
vector V' € T, M can be expanded as both

0 ~ 0
V=Vi—=V" . 3.16
oxH oy ( )
So that they are related as
- Oxt
Ve =V" : 3.17
i (3.17)
The vector transforms so that V' itself is invariant. Similarly for n € T;M
1= nudat = n,dy”, (3.18)
so the relation is
_ Jy”
e =Ty oo (3.19)

A quick note on notation: Reading the preceding sections carefully ought to make
expressions like i—i look somewhat strange. That is because this is strictly speaking, an
abuse of notation and we ought to be using

0 _
g (Fov (@) (3:20)
instead (since the coordinate representation of a function depends on v). However, for

the sake of clarity, we will be sticking to the "abuse of notation’ used in this chapter as it
is the more familiar and compact.

3.4 Induced maps and Flows

Now that we have seen some of the structures interesting to physics emerging, we
might perhaps take some time to examine how they are manipulated. But first, we
return, once again, to maps. Having introduced tangent spaces, we now need to examine
their properties under mapping also. This is important since, by definition, 7}, M exists
only at a point and is distinct from 7,y M, the tangent space at any other point. So,
it stands to reason that we somehow need to relate them. Let’s take another look at a
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Figure 3.5: The map f : M — N induces the map f. : T,M — T,N on the tangent
space

smooth map f : M — N between two manifolds, recalling that it maps points p € M to
f(p) € N. What this does, is to give us an induced map which we will denote

fe: TpM — Tf(p)M, (3.21)

acting on the tangent space. That is to mean, if we have some smooth map acting on
points on the manifold, it induces a map acting on the vectors that live at those points.
Explicitly, taking a vector V € T,M and denoting its action on some function by Vg,
we get

fVIgow™ (] =VIfogouv™(z)] (3.22)
in two coordinate charts on M and N. Ok, let’s try to be even more explicit and take
two vectors V' € T,M and W € Ty N which are related by f.(V) = W. Both can be

expanded in a coordinate basis as V = V“m and W = W”m. Then, taking g = x*
Z )
(a coordinate function) and f: {z*} — {y"}, we get
Ot
Vg = Vel —yn (3.23)

D

and define our mapping so that

dz*(y) '

(R[] = Wl ()] = W=

(3.24)

So that we can relate the components as

Oxt
yn = e 20 (3.25)
oy~
which hopefully looks familiar as a coordinate transformation. This juxtaposes before,
where we showed that a coordinate transformation was to be thought of changing charts.
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That, in fact, is what is called a passive coordinate transformation whereas what
we just derived is an active coordinate transformation. To illustrate this let’s take
our example from before - the sphere S? - and apply this. We look at our projective
coordinate chart for the north pole and realize it as a map from R® onto our sphere in
R? so f: R®* — S% C R? so that

: _ 7T Y
f.<x7y72)—>(X’Y)_(1—Z’1—Z)‘ (326)
5 0 0 0 .
Now take some vector V € T,R” as V' = a— + b— + ¢+ at some point p = (z,y, z) and
or 0Oy 0z
map it to f,V € Tf(p)]RQ. Then, applying this map
oy 0
*V =Vr a
/ v oxv Oyt
= a a_X_|_8_X_|_8_X i+b a_Y+8_Y+8_Y i (327)
B Jdr  Ody 0z ) 0X Jdx Oy 0z )Y '
B 1—z—xi+ l—z—yi
oz ax 122 oy
Alternatively, we could also take
: _ -1 -1(Y
fi(@,y.2) = (@, B) = (cos! (), tan ™" (£)), (3.28)
giving
Loyt 0
e %x”a_yg 0 0 0 9] 0 0
a Oda  Oa g 0B 0B
=a|l—F+——+—)|=—+b|=—F+=—+=—) = .
a<8x+8y+8z> da <6$+8y+8z) 98 (3:29)
I S A
V1 — 220« 24+ y20p

To compliment the above, we also have a second map acting on the dual tangent space
[T ThpyM — T;M. The action of this map, taking one forms n : T;M and € : T}, M
and identifying as beforef.(n) = ¢, is, in components

oz
€y = 3y n”. (3.30)

Note that it acts in the opposite direction of f,. This directionality does in fact, lend
names to the maps: f, is called pushforward and f* pullback.
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Figure 3.6: Some properties of the flow ¢ induced by a vector field V'

The next concept we want to tackle is that of flow, since it will lead us into the subject
of the next chapter. Take a curve C : R — M in some coordinate chart and a vector
V € T, M (for simplicity we will denote both the point on the manifold and its coordinate
representation as x). Now write

d dx* 0

d\  d\ Oz’
so we are dealing with the tangent to that curve in a coordinate chart. For the vector
write

(3.31)

V)] = ve-L v o). (3.32)

Ozt
Now, an integral curve, is a curve () whose tangent vector at a point x”(\) is V' |,.
So using the above equations we can write

Vi(z(\) = %x“()\). (3.33)

The solutions to this equation are denoted by o(\,zy) where xy corresponds to the
coordinates of the point along the integral curve where A\ = 0. This translates to the
initial condition

O'M<O,SL'0> = X, (334)

and the above is written

VE(o(\, 20)) = %0“()\, o). (3.35)
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We also have some of its properties illustrated in (3.6). This map is referred to as the
flow generated by a vector field V.

3.5 Lie Derivatives and Brackets

Now we are ready to look at some more interesting structures. It seems to be fact that
many people struggle with the intuition behind Lie Derivatives. Hopefully, this section
will show that as a concept these aren’t so nebulous as many suppose them to be and
that there is in fact, very simple intuition behind them.

To start with, let us take two vector fields V' and W and their flows 7(\, z) and o (A, x)
so that we have

d d
n_ " B I ) 3.36
V=t (da), W= —cot(A ) (3.36)

Now let’s ask (and pay attention here), if we took a vector V' at a point p somewhere
on the integral curve generated by W (so o#()\,p)) and then 'pushed’ it along the curve
some distance € (so to (A + €, p)), how would V' change? This is exactly what we are
trying to answer using the Lie Derivative and is illustrated in . For simplicity we
will speak of a single vector V', though this should of course always be vector field also
we will suppress most of the information in o#(\ + ¢,p’) so that this becomes o, to save
on notation (and since we are only interested in the displacement). But we must bear in
mind that vectors at different points on the manifold also live in different tangent spaces.
So we use what we learned about induced maps in the previous section: To compare
vectors that reside at different points, we must compare one to the pullback of the other.
In this case, the map we are using is the flow and as you might imagine, the flow from p
to o(p) induces a pull back on the tangent space so o._ : T,y — T},. The Lie derivative
of V along W is thus defined by

*76V o _V
LV =lim 0 =Vl

e—0 €

(3.37)

To obtain an explicit expression for this, we take a chart with {z"} and relate coordi-
nates at a point p to those at o.(p) by

D) % 7 on(p)) + €52 () oo +O)

(3.38)
~ a(p) + W (z(p)) + O(e*).

This means we can write
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Figure 3.7: What is the Lie derivative trying to determine? How do we compare vectors
that "flow’ along another vector field to each other?

14 14 8
oep) = V(" +eW (x))@
o (3.39)

~ (vu( ) + W (@ )621/‘/“(30)) 7

V

ozt

Then the pullback can be calculated as

oe(p) — %4 (ZE(p ))gf:,((p/)) ox

= (V”(a:) + eW“(w)

OV

(p)

VY (a )) (55 +eaiVW“(x)) aiv +0(&).
(3.40)

Substituting this in (3.37)), we obtain an expression for the Lie derivative of two vector
fields

ozt oz oz’

Now, interestingly we can look at another object that, on the surface, wouldn’t seem
related to this one. The Lie bracket is a map

LyV = (W“iv 9 W”> 0 (3.41)

[, ]:T,M x T,M — T,M. (3.42)

Though it should be said that it can act on any kind of vector space, presently we
are dealing only with tangent vectors. Its action is taking two vectors V, W &€ T,M and
returning a single one. So, by acting on a function f € F, we have

VW] = VIWIA] = WV (3.43)
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Figure 3.8: The Lie derivative determines the rate of change of a vector field along a flow
generated by another vector field

of

Remembering from before how vectors act on functions: V[f] = V“m and that this is
T

itself a function, this,in a coordinate chart, can be expanded as

0 0 of
= H_— v_ H_— v
vowiin) = (vegmawe - we v ) O (3.44)
From here we see that
LyV =[V,W]. (3.45)

What this is telling us, is whether the two flows associated with the vector fields V' and
W commute with each other. Some properties of the Lie derivative:

e Action on functions: for a function f the Lie derivative is Ly f = V]

e Linearity:
LiwV = fLW —W[f]V

LwfV = fLyW +V[fIW
Meanwhile, for the Lie bracket we have the usual properties

e Skew-Symmetry:
VW] =-[W, V]

e Linearity: for some constant ki, ks € R
(V. kg W + ko X| = k1 [V, W] + o[V, X]

[/{;1‘/ + k2X, W] — /{31[‘/, W] + kQ[X, W]
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Figure 3.9: The Lie bracket can be thought of measuring the failure of two flows o and 7
- here generated by V# and W respectively - to commute: [V#, W] = §*

e Jacobi identity
(X, [V, W]+ [W,[X,V]]+ [V,[W,X]] =0

It ought to be obvious that through (3.45) the properties of either one of these carry
over to the other.

3.6 Differential Forms and Tensors

Before moving on to some physical applications of everything we have learned so far, we
are going to relate everything we have done so far to the concept of tensors encountered
in the introduction. There, we saw them as multilinear maps on a vector space with a
composition called the tensor product (more generally and formally a type of monoid).
We may also use this structure to construct tensors on our tangent space by identifying

{e.} = {%} and the dual {e"} = {dz"}.

A quick side note here on something that will become important in a later chapter:
So far we have denoted the basis of T, M by using partial derivatives. This is useful when
thinking about vector fields and their actions on functions, but it isn’t the only choice.

We could take some basis {¢,} which is related to {é,} = {A”, 5%} where A", € GL(d).
That is to say, A is a general linear (square) matrix of dimension d corresponding to the
dimension of the basis and is a general coordinate transformation ((3.25)) is a particular

example). When the basis of a tangent space is referred to without writing it out in
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partial derivatives, it is known as a non-coordinate basis.

For now, we will be sticking to our normal tangent space basis. The space of tensors
of valence (¢,7) at a point is denoted by 7,2 M. A tensor T" € T2 M can then be ex-
panded as

J 0 " ® 0 ®dr" @ dr”? @ -+ @ dx™”" (3.46)

T — Timzpg Y
VIV Ot ® OxH2 Oz

Taking f : M — N a diffeomorphism, the pullback naturally extends to (q, 0) tensors
as amap f. : Ty, — 7Bq . While for (0,7) tensors the push forward is f* : T, — TO

As an example, we take a (1,1) tensor and function so that in some coordinate chart
f:A{z"} — {y"}, and consider

(93/ oz¥ 0
8x“ DyP Dy~

LT = f. (T“y% ®dm”) =T",f. ( ) ® fi(dz”) = ® dy’ (3.47)

Now, this leads us into out next topic. We note that the composition ® does not say
anything about the symmetry properties of the resultant tensor. We know that from
physics that tensors can possess symmetric and/or antisymmetric indices, however the
tensor product by itself does not allow for permutations of the tensor factors and hence
the indices. What we look at then is a particularly important type of antisymmetric (0, r)
tensor called a differential form. Recall from earlier that we made use of the notation
QM for the cotangent space calling into mind the question as to the purpose of !. Now
we are going to define a totally antisymmetric (0,7) tensor using the wedge product,
or exterior product, which, at the simplest level, is a map

AQM @ QM — QM (3.48)
Where Q%M is the space of totally antisymmetric two forms. For example
1
A (dz* @ dz¥) = da* N da¥ = §(dm“ ® dz” — dz” ® dz") (3.49)
so that it is simply the antisymmetrisation of the tensor product which has the property

da? A\ dz¥ = —dz¥ A dz* (3.50)

from where we see that dax" A dx" = 0. More generally we can have a differential form
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dx" Ndxt? N A dat (3.51)

which is referred to as an r-form and is an element of (2" M the integer r is called the
degree. Meanwhile the wedge product extends to higher degree forms as

A:QQ"M @ Q"M — QMM (3.52)
From ([3.50) , we note the important property

dx* Ndxt? N Adxtt =0 (3.53)
if any index is repeated. A general r-form w € Q"M is expressed as
1
w= ﬁwmw...mdx’“ Adxh? A - A datr (3.54)

Now, something interesting to note: If we have a manifold of dimension m, then the
highest degree r of any form, will be » = m. This is because if we have m basis one-forms
corresponding to the number of coordinates, we will not be able to build a form with degree
higher than m without repeating any element (according to (3.53))). More generally, due
to the antisymmetry of the wedge product, the maximum number of elements in "M for

a manifold with dimension m is
m m!
=" 3.55
( r ) (m —r)lr! ( )

Generally, for any forms of arbitrary degree w € "M and £ € QP M we have

wAE=—-ENw

3.56
wAw=20 ( )

For completeness, we note that Q°M = F(M), the space of functions. Let’s look at
an example: Take a manifold with dim(M) = 4 and a chart with coordinates {z*} where

1 < pu <4 and one form basis {dz"}. Now what sort of forms can we build out of this?
See B3.101

The highest degree form is called a top-form. Next, we have the exterior derivative,
a map

d: Q"M — QM (3.57)
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Q'M Q'M O*M O*M Q'M
F(M) da! dzt A da? det ANda? Ada® | det Ade? Adad Adaxt
dz? det A da? dzt A dx? A da?
da? dz' A dxt dx' A dx® A da?
dz! dz? A da? dz? A da® A da?
dz® A dat
dz® A da?

Figure 3.10: All possible combination of forms in 4 dimensions

Explicitly, acting on some r-form w, this is
d_l 0 dr? dxrHt drt2 Azt 358
w_ﬁ %wﬂllﬂ“‘ﬂr o Ndx" Ndxt? N\ - N dx ( )
For example, if we take R® with coordinate chart (z,y,2) a O-form wy = wo(z,y, 2),

then clearly

&uo (9w0 c%zo
pe dx + By dy + P dz (3.59)

By extension, if w; = w,(x,y, 2)dx + wy(x,y, 2)dy + w.(x,y, 2)dz then

du.)o =

Owy 0wy Oow, Ow, Ow, Ow,
dwy = (%— ay)alas/\dy—l— ( 5 az)dz/\d:)sjt ( 9. agv)dy/\alz (3.60)

and so on until one arrives at the top form ws = ws(z,y, z)dx A dy A dz where clearly

We also note an important property of the exterior derivative, for any r-form w € Q"M

Pw =0 (3.62)

it is a nil-potent operator. You may have noticed the section on Lie derivatives defined
their action only on a vector basis, but not on the dual one forms. For this extension we
need one further map. The interior contraction (or interior product), is a map
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i TM x Q"M — QM (3.63)

and denotes the contraction of a vector with an r-form. Note that it is not the inverse
of the exterior derivative. For V.e TM, W € TM, w € QM,n € Q"M and v € QP M we
have

o iyw=w(V)=(w,V")dz" (%) = w, V"

o iy(n A7) = (ivn) Ay + (=1)*5 7 A (iyy)
o iy = —iwiyYy
[ J iviv’y =0

Where the second property allows us to extend ¢ to forms of any degree. As an example,
let’s look again at R? and take wy = wydx + wydy + w.dz with a vector V; = Va%' The
we have the contraction

iy = iy (Wed) + iy, (wydy) + iy, (wedz) = Vw, (3.64)

Meanwhile, taking wy = wydx Ady+w,dy ANdz+w.dz \dx we can calculate the contraction

wy = iy (wedx A dy) + iy, (wydy A dz) + iy, (w.dz A dx)

(3.65)
= Vw,dy — Vw,dz
Now we can finally write the Lie derivative for differential forms as
Lyw = diyw + iydw (366)

An interesting exercise at this point might be to try and derive this expression for one
forms based on the derivation of the Lie derivative for vector fields. Out last point is the
action of the Lie derivative on tensors (since we now know how it acts on the dual basis).
Generally, if we take the tensor product of an arbitrary vector and r-form and act with
the Lie derivative we get

which is simply a version of the usual Leibniz rule for differentiation. So now, if we
take a (1,1) tensor T € T, the above means that we have
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ﬁvT = EV <T“V% ® dl‘y)
v (3.68)

0 0 0
= V[Tﬂy]% X d.ﬁUV + T”VLV <%> & dl‘l/ + T”V% & £V (dl’y)

remembering that we also need to act on the scalar component T ,.
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Chapter 4

Differential Geometry

In Chapter 3| we have studied manifolds in the most abstract way. It is very remarkable
how far we can get by studying those geometrical structures without even defining the
concept of distance. In this chapter we take a step further and we introduce the concept
of metric. This is a fundamental concept in geometry since it enables us to define every
single geometrical quantity, including distances, angles and volumes, in terms of it. As a
matter of fact, one could argue that the metric is the borderline between topology and
geometry, even though this subject is far more subtle than it seems.

The metric also appears everywhere in physics, specially in General Relativity where it
plays the role of a fundamental tensor field in nature, interacting with matter accordingly
to the Einstein’s field equation. We will see more on this in the second part of this course.
For the time being, let’s see how it beautifully appears in pure geometry.

4.1 Metric

We know from Euclidean geometry that the dot product satisfies the following prop-
erties for u,v € R" and a,b € R:

1. Symmetry: v-v=v-u
2. Distributivity: u - (av +bw) = au-v+bu - w
3. Ifu-v=0 for all v € R", then u = 0.

It turns out that these properties are the most important properties that characterize
such kind of product. In order to generalize this notion of product to smooth manifolds,
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we have to keep these properties in mind and take them as axioms. Then we get the
following definition.

Definition 4. Let V' be a real vector space of finite dimension. A real inner product on
Vs a map V x V. — R that assigns a real number (u,v) € R to every pair of vectors
u,v € V satisfying the following three conditions:

1. Symmetry: (u,v) = (v, u)
2. Distributivity: (u,av 4+ bw) = al{u,v) + b{u, w)
3. If (u,v) =0 for allv € V, then u = 0.

Now we are able to introduce the object that gives name to this section. A metric
tensor (or simply metric) on a smooth manifold M is a (0, 2)-tensor ﬁeldﬂ satisfying the
following axioms:

1. Symmetry: g(X,Y) = g(Y, X)
2. Positive definiteness: g(X, X) > 0if X # 0.

This means that the metric assigns an inner product structure to every tangent space
of a manifold M, that is, for every p € M the map g, : T,M x T,M — R is an inner
product. Sometimes we will also use the notation (X,Y), = ¢,(X,Y’) to emphasize this
last fact.

See that we are assuming the existence of a new object, the metric is not a consequence
of the previous theory of smooth manifolds. That is the why we say it is an additional
structure and we call the pair (M, g), formed by a smooth manifold M together with a
metric g, by Riemannian manifold.

We may go even further relaxing the positive-definite condition of the metric and
instead assuming that it is just non-degenerate g(X,Y’) # 0. A manifold together with
such a metric is called pseudo-Riemannian manifold or semi-Riemannian manifold.

Example 4.1.1.

'A tensor field on a manifold M is a bit more general than a tensor (not a field) in the following
sense. Let F(M) be the set of all smooth real-valued functions on M. Then a (r, s)-tensor field is defined
to be F-linear (instead of R-linear as is the case for tensors) in each of its arguments. For example, a
(0,2)-tensor field T satisfies

T,(fX +gY)=f(p)Tp(X) +9(p)T,(Y), peM and f,g€ F(M).
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1. The real space R" together with the dot product is a Riemannian manifold called
Euclidian space and denoted E"

2. Spacetime together with the metric given as a solution of Einstein’s equations is a
pseudo-Riemannian manifold

3. Any surface immersed in E" is a Riemannian manifold

4. The configuration space of a Lagrangian mechanical system is a Riemannian mani-
fold

In any coordinate system (U;z") we can write
g = gydr' @ da?, (4.1)

where ¢;; = g(0;,0;) are the coeflicients of the metric tensor. In the physics literature g;;
is what is called metric tensor, but keep in mind that this is an abuse of nomenclature.
If we introduce the symmetric product of two 1-forms w and 7, denoted by juxtaposition,
the notation used in Equation [£.I] can be shortened:

1
wy = 5w en+1n®w).

Due to the symmetry of g;;, Equation .1 can be written in the following way:
g = gydx'da’. (4.2)

As it was stressed before, all of the geometrical concepts can be written in terms of the
metric. The canonical way of defining distance in Euclidean space, for example, is taking
the square root of the inner product. Since the metric assigns an inner product to each
point of a manifold, one would conclude that

1= gl

Moreover, the length of a curve v on a manifold is defined to be

s= [l = [ Vaama = [ ot
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Then, from the fundamental theorem of calculus, we get the formal expression (in the
poor senseEI) usually taken by physicists as the “definition” of the metric

ds® = gijdr'da’. (4.3)

It is important to note that Equation is very formal and objects like da’dx’ E|and ds*
have no mathematical meaning here. But fortunately, the notation used in differential
and integral calculus is very good and physicists do not need to know about differential
forms to proceed with their formal calculations.

Another example is the angle between two tangent vectors X and Y on a manifold is
given by

g(X,Y) _ g(x.Y)

XY e(X, X)g(Y)Y)

and as we can see it is written solely in terms of the vectors and of the metric.

We will close this section by showing that the metric establishes an isomorphism be-
tween vectors and covectors. Let u = u'0; be a vector on a manifold M equipped with a
metric g. We can define a covector T, by

T.(v) = Zg ® u(0;, v, dz").

cosf =

Exercise 4.1.1. Convince yourself that T, is indeed a covector.
Exercise 4.1.2. Show that T,(v) = g(u,v).

Its coordinates are given by
u; = T,(0;) = giju. (4.4)

This process is called lowering the index. Conversely, if w = w;dz’ is a covector, then the
vector T, defined by

Tulp) = g " @w(dr' p,,),

)

1

where ¢7' = ¢Y0; ® 0; is the inverse of the metric g, has components

w' = gw;. (4.5)

ZWhen one speaks about formality in mathematics, he means the management of objects concerning
their form and not the mathematical concept behind them. In physics formality means exactly the
opposite.

3Observe that this is not the symmetric product defined above. Instead, this is the result of “canceling”
dt’s from both sides of the equation.
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This process is called raising the index. This shows that for every vector there is a
corresponding covector and vice versa. Componentwise, they are simply related through

the metric as in Equations (4.4)) and (4.5)).

Exercise 4.1.3. Show that raising and lowering index in sucession produces no effect.
This is the reason we can keep the same kernel letter u for the vector components u' and
the covector components wu;.

4.2 Connections

A curve in Euclidean space is straight if and only if its acceleration vanishes identically.
As we know, this is a very important feature of Euclidean geometry and one of the most
fundamental concepts in mechanics as well. Hence, it would be great if we could keep
this idea on general smooth manifolds and then look for the “straight lines” over them. It
turns out it is completely possible to do so if we generalize the notion of acceleration and,
in turn, the concept of derivative of vectors. The latter can be easily generalized since we
always expect that any notion of first derivative should satistify the linear and Leibnitz
rules. As such, we are going to introduce the covariant derivative as a primitive concept
satisfying these properties. If T (M) is the set of all smooth vector fields on a manifold
M, then an affine connection (or simply connection) V is a map

YV T(M) x T(M) — T(M) (4.6)
(X7 Y) = VXY (47)

which satisfies the axioms

Vx(Y + 2Z) = VyY + VxZ, (4.8)
VixanZ =VxZ+VyZ, (4.8b)
Vix)Y = fVxY, (4.8¢)
Vx(fY) = X[flY + fVxY, (4.8d)

where f : M — R is any differentiable function, X,Y,Z € T (M) and X|[f] represents the
directional derivative of f in the direction of X at p, defined by

:% ptx) =Wy (4.9)

X[ o

t=0

The last equality of was resulted through the application of the chain rule.
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The connection produces a derivative VxY with the above properties, called covariant
derivative. Intuitively, the value of VxY at a point p € M is the rate of change of Y in
the direction of the unit vector X (p).

The covariant derivative of a vector field Y along a curve v : R — M is defined to be

DY
~ =D.Y,
dt K
where 7 is the tangent vector to the curve. On a manifold there are infinite many different
ways to define a connection that could satisfy Equations (4.8)). Despite this, we can restrict
this range of options if we demand that such object obeys some other properties. In this
sense, a Levi-Civita connection is a connection such that, for any X,Y, Z € T(M):

VxgY,2)] = g(VxY,Z) + g(Y,VxZ), (4.10)
[X,Y] = VxY — VyX, (4.11)

where [X, Y] is the Lie bracket of the vector fields X and Y.

The property , known as compatibility with the metric, says the metric is pre-
served along any curve on M and, hence, angles and volumes are also kept constant. On
the other hand, the relation implies the symmetry of the connection and of the
Christoffel symbols, as we will see later on, and is associated to torsionless connections.
Unless stated otherwise, we are going to consider only Levi-Civita connections.

In what follows we will illustrate some of the concepts introduced above with concrete
examples. The simplest case is the one of vector fields in the Euclidean space R?. In this
case the covariant derivative

Vi T(E®) x T(EY) — T(EY)

of W = W', with respect to the vector X at p is defined by

VW == %W(p +tX)(0), (4.12)
= %Wi(p +tX)(0)9;, (4.13)
= X[W6;, (4.14)

i.e., the covariant derivative is the directional derivative of the vector field W in the
direction of v, which is the derivative of the Equation (4.9)) calculated for each component
of W. To show that (4.13]) is in fact a covariant derivative, we just need to verify it
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satisfies the properties (4.8). To do this we just have to verify them for each component
of the Equation (4.14)). Therefore, from the linearity of the usual derivative, we get (4.8a)):

_ . . . . d . ,
Vx(V'+Z2) = X[V + 2] = (V' + Z0)(p + 1X)

t=0

d ... .
= — [Yz(p +tX)+ Z'(p+ tX)}
dt —o

= X[Y'|+ X[Z'|=VxY'+VxZ"

Using the chain rule we get (4.8b)):
— . d .
VxivZ' = aZ’(pJr HX+Y))
ozt . .
— J J
= 5 (X7 +Y7)
VAR VA
= —X’ .
Oz +8x7 S
=X[Z'|+Y[Z'|=VxZ'+VyZ"
The relation (4.8¢)) is obtained through the direct application of the chain rule and of the
Leibnitz rule:

t=0

yi

Vix¥' = (P = LY+ £X)

t=0
oytd . <
— . J
s HHX)|
oY af ., ;
= o0 V“(W )] F
oY? .
— J
oxd FX

= [X[Y'] = fVxY"
Lastly, property (4.8d) is resulted from the application of the Leibnitz rule:

VafY' = X[V = S (Y +1X)

t=0
d od

= — tX)| Y+ f=Yip+tX
g/t )t:0 HfEY e+ )t:O

— X[f]Y' + fX[YT] = X[f]Y 4 fUY.
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Exercise 4.2.1. The covariant derivative of vector fields on a surface S immersed in R>

is defined by the projection of (4.13)) on the surface S:

V:T(S) x T(S) = T(S) (4.15)
(X,Y) = VxY =VyxY — (VxY,N)N, (4.16)
where 9 %
X
N=— 22"
10 > 0]

is the normal vector field to the surface, also known as Gauss map, and VY represents
the Euclidean covariant derivative given by Equation (4.14). Prove that Equation (4.16)
is indeed a covariant derivative.

Geometrically, the definition (4.16]) measures the rate of variation of a vector field Y,
defined over a surface S, in the direction of the unit vector X, also defined over S. If
we imagine y(t) as being the curve which describes the position of a particle constraint
on a surface S, then the covariant derivative V. ;7'(t) has the meaning of the particle’s
acceleration vector over this surface.

It is interesting to note that so far the covariant derivative has been used abstractly,
that is, without the need of introducing a reference frame. However, it is useful to express
it as coordinates of such a reference system to make calculations easier. So let {0;(p)}
be a basis for T),M. The covariant derivative of a vector from this basis with respect to
another vector from the same basis is again another vector of this basis. Therefore, we
can write

Vo,0; = Tj0k, (4.17)

where the coefficients Ffj are called Christoffel symbols. Moreover, from Equation (4.11]
we find that:

[8¢, 8]] = Vaiaj — Vaj@
= (T} = I%) 0.
Since 0;0;f = 0,0, f, it follows that:
Il =T%, (4.18)

i.e., the Christoffel symbols are symmetric in the lower indices.
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Hence, in order to specify the covariant derivative of arbitrary vector fields is enough to
specify it for each basis vector d; with respect to 9;. Then, using Equation (4.17) together
with the properties (4.8), we find that for generic vectors X = X'0; and Y = Y”0; that:

VxY = Vyig, (Y70,) (4.19)

= X'V (Y79;) (4.20)

= X'YIV,0; + X'0;V,Y? (4.21)
iviTk iayj

Since the index j in the last term is dummy, we can change it for £ and we get

VxY = o +YITE | X0, (4.23)
R gl b '
If we repeat the above argument for vector fields Y defined along curves ~, we would
get
DY dy'* o dxt
— = —— + YTk Oh.. 4.24
dt (dt+ ”dt)k (4.24)

Exercise 4.2.2. Prove Equation (4.24]).

It is possible to find the Christoffel coefficients Ffj only in terms of the metric and its
derivatives from the metric compatibility condition (see Equation (4.10)):

Using that the Christoffel symbols are symmetric in the lower indices, Equation (4.25|)
can be solved explicitly for Ffj:

Kl
E_ 9 g1 Ogqu Ogij
by = 2 (8a7i * oxi aml) ' (4.26)

Be aware that the Equation only holds for the Levi-Civita connection. If torsion
is included, as happens in Einstein-Cartan gravity for example, the Christoffel symbols
cannot be expressed in terms of the metric and its derivatives. In fact, connections are,
in general, completely independent of the metric since they form different mathematical
structures. Fortunately, General Relativity has the Levi-Civita connection and Equation

(4.26) is all we need to specify it.
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4.3 Geodesics

A vector field Y is said to be parallel along a curve « if its covariant derivative along
~ vanishes for all ¢ in the curve’s parameter range, that is,

DY

A curve whose tangent vector is parallel along itself is called a geodesic:
Vi =0, tel. (4.28)

Therefore, the geodesics are precisely the “straight lines” on manifolds that we were looking
for, simply because their accelerations vanish.
According to Equation (4.24]), in a coordinate system (U;z') Equation (5.1)) becomes

d?z% . dad dx
T
dt? Yodt dt

=0. (4.29)

This is the equation which describes the geodesics in a neighborhood U of a manifold.
It must be observed that Equation (4.29)) was determined without specifying any specific
connection, hence wether Christoffel symbols in this equation can be determined through
the metric, as in Equation , or not depends upon the chosen connection.

The parameter t used to parametrize v such that it satisfies Equation is called
affine parameter. Under a reparametrization of v, say ¢’ = f(t), the tangent vector
becomes , ,

., dz’ 1 dz’
Y= T f,_@)% i)

where f'(t) = df /dt and, using Equation (4.29), we have

d?z* LT de?ds* 1 d 1 dz’
a2 Hdy v f(t)dt \ f(t) ) dt
f”(t) dmz

_f/(t)2 At :

Hence the new parameter ¢’ is an affine parameter if, and only if, f”(t) =0 or t' = at +b
for a,b real constants. This shows that the fact of being a geodesic depends on the
parametrization. Curves that can be transformed into geodesics through a reparametriza-
tion are called pre-geodesics.
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4.4 Torsion and Curvature

In the transformation law of Fé 1> the term involving second derivatives is symmetric in
the indices jk. It follows that the antisymmetrized quantity

R - Y (4.30)

does transform as a tensor, due to the cancellation of the non-tensorial parts. To express
this idea in a non-coordinate way, we define the torsion map 7 : T (M) x T (M) — T (M)
by

7(X,Y)=VxY - VyX — [X,Y].

Exercise 4.4.1. Show that 7 is antisymmetric, i.e., 7(X,Y) = —7(Y, X) and F-linear
(see the footnote in the beginning of this chapter).

Hence 7 gives rise to a tensor field T of type (1,2) defined as
T(w, X,Y) = (w,7(X,Y)).
It is called torsion tensor of the connection V.

Exercise 4.4.2. By applying T' to basis vectors, prove that its coefficients in a local
coordinate chart (U;z") is given by Equation (4.30)).

We call a connection torsion-free or symmetric if its torsion tensor vanishes identically,
T = 0. In this case, Equation shows that its components are symmetric with
respect to any coordinates.

A similar problem occurs when commuting repeated covariant derivatives on a vector

or tensor field. The map P : T*(M) x T(M) x T(M) x T(M) — F(M) defined by
P(w, X, Y, Z) = <w, VvaZ, VyVXZ>

fails to be a tensor of type (1, 3) since it is not F-linear in the three vector field arguments.
To remedy this we proceed in the same way as before for creating the torsion tensor.
For any vector fields X, Y define the operator pxy : T (M) — T (M) by

pX,yZ = VvaZ — VyVXZ — V[Xy]Z.

Exercise 4.4.3. Prove that pxyZ is F-linear in all of its components.
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Therefore, we can define a tensor field of type (1,3) by setting
R(w,X,Y,Z) = (w, pxy Z),

known as Riemann curvature tensor of the connection V.
In a local coordinate chart (U;z"), the components of the curvature tensor is given by

' = R(dx',0;, 01, 0,)
= (dz', Vi V10, — ViV0; — Via,.010;)
= (da’, Vi(T0,) — Vi(T00))
= (d2", T} 0 + T3 0p — Ui 10 — TRIT,0p),

m

1
where I}, = —-. Therefore

Ox

J J

The Ricci (curvature) tensor is then defined by

Ric(X,Z) =Y R(dx',X,0;,Z),

whose coordinates are

Rij = Ric(0;,05) = Rfkj = 9" Ruigj.- (4.32)

This process in which two indices are set equal to each other and summed over is called
contraction. Contracting again we get the Ricci scalar

R=R!=g¢"R;. (4.33)

If we are using the Levi-Civita connection, then the Riemann tensor, the Ricci tensor and
the Ricci scalar can be calculated directly from the metric. That is why the metric is
chosen to be the fundamental field in General Relativity; it carries all of the geometrical
and physical information we need.
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Part 11

Applications
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Chapter 5

(General Relativity

Now we have seen the basics of differential geometry, it is about time we moved on
to some applications. One may wonder as to the purpose of the previous sections (in
particular why they seem so long). The answer to this, is that we are trying to obtain
new intuition for something we are already quite familiar with. For this reason, it is
important to spend some time familiarizing oneself with the basics, in this case the notions
of topological spaces, manifolds etc. The actual application should then be almost only a
detail. What we are trying to do, is not to learn new physics, but rather to think about
the physics we already know in a different way. The following sections are not intended
as - could never be - a re-derivation of all of physics based on differential geometry, but
rather a list of specific examples. Hopefully familiar ones, they are intended to show how
we can take the contents of the previous section and apply to things we already know and
hopefully, gain some insight by doing so. At the end of the day, a formalism (like tensor
calculus or path integrals) is only a tool and it is important to have the knowledge to
choose the right tool for the job. In this section we will be looking specifically at General
Relativity (GR). What follows assumes that the reader is already familiar with GR at the
level of an undergraduate course. We are going to look some (hopefully) familiar examples
and then cast them in different ways based on the previous chapters.

5.1 Postulates

The theory of GR is just a match of geometrical concepts with physical ones. Pre-
cisely, this is done by setting up the postulates of GR as follows. The universe is a
four-dimensional Pseudo-Riemannian manifold (M, g) of index +2 (i.e., with a metric
whose signature has 3 plus signs corresponding to spatial coordinates and 1 minus sign
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corresponding to time coordinate; the index is defined to be the sum of these signs) called
spacetime. Its points are called events. Test particles “free fall” along spacetime, since
they are subjected to no external forces, following its geodesics:

d?xH dz? dx
+ 14 _
ds? P ds ds

~0. (5.1)

The geodesics followed by massive particles are assumed to be time-like, whereas massless
particles, e.g. photons, move along null-like geodesics. Since the geodesic equation ([5.1])
does not depend on the mass of the particle, all particles have the same geodesic. This
is the equivalence principle: all particles undergo the same acceleration in a gravitational
field.

The Einstein field equations are

1
Ric — §Rg = 8nT, (5.2)

or in a coordinate chart 1
Ry = 5 Rgu = 87T,

where T' = T,,dz" ® dz” is the stress-energy tensor of the matter fields and we are
using units such that Newton constant and the speed of light are G = ¢ = 1. Keep in
mind that Equation cannot be proved, it was first obtained by brute force (just
like Newton’s second law and Schrédinger equation) in an attempt of getting a relation
between curvature and energy. That being said, we can adopt a variational approach
in which the field equations can be deduced. This is accomplished by using the

Hilbert-Einstein action
S = / v/ —det(g)R. (5.3)

Varying this action with respect to the metric field and setting the result to zero leads
us to (5.2). However, by adopting the above action we are just shifting our ignorance
because now what cannot be proved is Equation (/5.3)).

5.2 Tetrad formalism

To begin with, we are going to take a closer look at something that was already touched
on in previous sections, a non-coordinate basis (also called a tetrad). In the section
on manifolds, we formulated all out quantities in terms of the tangent space basis {0, }.
It has the drawback of explicitly depending on some choice coordinates z* and as you
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may recall, no one coordinate systems is unique and there is generally no canonical choice
(that is, there is no preferred system of coordinates). An example of where this becomes
an issue, is the Schwarzschild spacetime which, if you recall, describes black holes. Since
it is by definition spherically symmetric, the easiest choice of coordinate chart is spherical
coordinates. But, as you hopefully recall, this leaves us with an apparent singularity at
the black holes event horizon which can be dealt with by a change in coordinates (e.g.
Eddington-Finkelstein or Kruskal-Szekeres). What we see however, is a coordinate sys-
tem which makes calculations easy but suffers from a significant pathology while trying
to eliminate it, can make the analysis all the more difficult. Mathematically speaking,
neither of these scenarios is preferred and both are equally valid in the regions their cov-
erings overlap. However, we still need some notion of coordinates if we are to do physics.

We are going to avail ourselves of a tetrad basis {e,} which is related to our tangent
space basis by some coordinate transformation

Oy 0
Oz Oy

I you recall, any coordinate bases can be related to any other by a transformation of
this kind. Now however, we are going to denote the transformation matrix by

(5.4)

Ca

a v

0 = Y

ox®

and take a look at some of its properties. Firstly, and most obviously, we can recast

E) as

(5.5)

o =€ 0= (5.6)

While, conversely for the dual basis {dz*} on T*M, we have

e = e, dx” (5.7)

We then require that the basis {e,} be orthonormal, that is, the inner product
satisfies

<€a,65> = 5015 (58)

This means we have a metric in this basis given by

g = gudr" ®dz" = guees’e” ® ef = Muwe” ® e =n (5.9)
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where 7 is the flat space Minkowski metric

~100 0
0 100

_ 5.10

7 0 010 (5.10)
0 00 1

This is nothing more than a coordinate transformation into a frame where the metric
is flat. The matrices {e,"”} are called vierbein E| and correspond to whichever coordinate
transformation maps one to this frame. But hold on, what about curvature, surely you
can’t just do a coordinate transformation and get rid of it? Indeed one can’t. Usually,
our tangent space basis {0} is rather trivial, so that one has, for example, [0,,0,|f =0
for any function f. This is obvious since partial derivatives commute with each other.
However, the basis {e,} isn’t as trivial, since it will generally contain some functional
dependence and then [e,, e,]f # 0 as for the general Lie bracket of vector fields. What
this special coordinate transformation amounts to is taking all the parametric dependence
out of the metric and putting it into the basis vectors in such a way that they are or-
thonormal. The most astounding thing about this, is that it is always possible to find
such a transformation. Also, it is worth noting that a basis given by will have a Lie
bracket of the form

{6“,6,,] ’p: C,uua(p)ea |p (511)

Further, we note that e®,e”, = 9,” and e, et's = 0“3. It is important to distinguish
between the indices on this matrix when raising and lowering, since this is done in dif-
ferent frames with different metrics. For example, the transformation in (5.5)) one has
Cua = Gue o and e’P = naﬁe”a. Also note €”,e,5 = 1o and €”,e!* = g,

Let’s have look at some examples. First consider the standard spherical metric on S?

ds* = df @ df + sin*(0)d¢ @ d¢ (5.12)

This can easily be converted into the form ([5.9) if we take a basis

el =df e* =sin(6)de (5.13)

Wierbein is German and translates as ’four-leg’ which is specific to four dimensions. In arbitrary
dimensions the term vielbein is used (many-leg). In a specific number of dimensions one can also have,
for example zweibein, dreibein etc. (receptively two-leg and three-leg)
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The tetrad is then read of as

o (1 0
Cn= <O sin(6) ) (5:14)

Now, consider the Schwarzschild metric in spherical coordinates:

2GM 2GM\ !
ds® = — (1 _ ) dt@dt+ (1 - G—) dr@dr+r*dd®do+r? sin?(0)dep@de (5.15)
r r

Here we see similarly

2GM\ /2 oG M\ 2
= (1- ¢ dt et =|(1- ¢ dr
r r (5.16)
e? =rdf e’ = rsin(f)do
with
1/2
(1 — 2GM) 0 0 0
T
2GM\~?
o 1—
e’y 0 < " > 0 0 (5.17)
0 r 0
0 0 rsin(0)

A more interesting example is perhaps a non-diagonal metric (in two dimensions for
simplicity)
ds* = du ® dv + dv ® du (5.18)

Here we can take

el = —=(du—dv) €*=—=(du+ dv) (5.19)

Sl
Sl

which you can verify:

ds’ = —e'@e' + 2 ® €? (5.20)

Does it look familiar? This corresponds to
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1 (1 1
ea“:ﬁ(1 N ) (5.21)

What all of this hopefully makes clear is that we can always choose to work in a non-
coordinate basis. We also note that this basis can be composed the same way as the
coordinate basis using the wedge product i.e. e” Ae”. The top form in this basis is special
and referred to as a volume form

Qu=ec'Ne2A---Ne™ = /| g lde" Ndz* A -+ A\ da™ (5.22)

where g is the determinant of the metric. This is nothing more than the volume element
from GR (think of integral measures [ /| g |d™z). Lastly, we mention for convenience
sake, a coordinate free version of raising and lowering indices. The metric can be viewed
as an isomorphism g : T,M — T M and g : T;M — T,M. Explicitly, for a vector
V € T,M we will denote its metric dual one-form as Ve T M where these are related
by by

V= g(V,—) = g(V%,, 65>€B = naﬁVo‘eﬁ = f/ﬁeﬁ (5.23)

For a one form w € T;;M its corresponding metric dual is

0 = g’l(w, -)= g’l(waeo‘, 66)65 = naﬂwaeﬁ = @565 (5.24)

It should be evident that we have @ = w and V = V. A note on conventions, in
the literature you might find this method a raising and lowering indices referred to as a
musical isomorphism. So, lowering the index of a vector is, independently of any basis,
denoted by V” and likewise raising the index of a one form by w®. If you are familiar with
musical notation, you might see the logic behind this, although we will not be using this
particular notation here.

5.3 Hodge Map

I we are to examine an alternative formulation of GR, we are going to need one more,
rather useful map. Let’s take another look at the Table [5.1, but now repeat the same
exercise in a non coordinate basis of dimension four.
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Q"M QM Q*M Q*M Q'M
1 et el Ae? el Ne? A e? el NeP neP nel
e el Ned el Ne? Aet
e el Aet et NP Ael
el e Ned e NedAel
2 Aet
e3 et

Table 5.1: All possible combination of basis forms in 4 dimensions, but with a non-
cordinate basis.

Looking at this table, we notice that opposite columns have the same number of el-
ements. So, as vector spaces, dim(Q°M) = dim(Q*M) and dim(Q'M) = dim(Q*M).
This is indicative of a duality that exists between the vector spaces: If we have an m
dimensional manifold with exterior algebra Q" M, the spaces of dim(n) and dim(m — n)
are related by Hodge duality. As a map, we have the Hodge star so that

o QUM — QM (5.25)
Forwe Q"M,V € TM and f € F(M) it satisfies the identities

* = %
(fw) = frw (5.26)
*(wAV) =iy *xw
We also have the special identity for the volume form
x1l=e' Ae*A---Ne™ (5.27)

So what bout actual evaluation? One method is the use the second identity in (5.26]).
So if we take v, e € Q'M this can applied to give

*wWAY) =15 *%w
*(WwAYNE) =tex (wWAY) =G5 *w)
This successive unpacking allows us to construct the Hodge star for any degree form
by considering its expansion an a non-coordinate basis. Taking now w; € Q'M we can
obtian
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* Wy = K(W1ye") = de, * Wiy = denty * 1 (5.29)

Where the Hodge star of a scalar quantity is simply that scalar multiplied by the
volume form and é" = e,. To check this, remember that the action of x is to map an
r-form into an (m —r)-form. Here, we are starting with a one-form and applying * means
that we contract the metric dual with the volume form to give an (m — 1)-form. So if we
were in four dimensions, the above would be a three form (see . Now for wy € Q*M,
we can similarly calculate

* Wy = *Waue A €”) = e, (xwopn€”) = te, (e, (Wouy * 1)) (5.30)

Generally for w € Q"M we can iterate this to give

* W = k(W oy €A N ET) = Wy (e, ey, * 1) (5.31)

Applying the Hodge star twice returns the original form up to some sign dependent on
the conventions chosen so that

*kw = (=1)7 ")y (5.32)

if the metric is Riemannian and

*xw = (—1)HFrm=r)y, (5.33)
if it is Lorentzian. Lastly, we note that we also have an inverse x *. By demanding
*x 1 =x"1x =id, we get that
—1 _ r(m—r)
* w = (-1 * W
(=1) (5.34)
*flw _ (_1)1+7‘(m71”) * W

if the metric is Riemannain or Lorentzian respectively. We can use these operations
for an alternative definition of the inner product between two forms

(w,7) = g warp =+ Hw A xY) (5.35)

There is a rather interesting example of this specific to three dimensions. Let’s take
R? with the basis {dz,dy,dz} (obviously, in this case e* = dz*). The volume form is
*1 = dx A dy N dz while for the metric we have

ds®> = dx @ dv + dy @ dy + dz @ dz (5.36)
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Now consider

*(dx Ndy) = g, i9, x 1
= i, %0, (dx N dy N dz)
= g, (dy N dz)
=dz

We are in three dimensions applying the Hodge star to a two form, so the result should
be a one form. Repeating, we also get

(5.37)

*(dx Ndz) = —dy, *(dy Ndz)=dx (5.38)
This ought to look familiar:

e, Xe,=e, € Xe, =—€, € Xe, =g (5.39)

What we have just obtained is, in a sense, a generalization of the cross product, but
one that can be used in an arbitrary number of dimensions. The cross product in R? is
special since it is only in this number of dimensions that we can take the product of two
vectors (co-vectors) and obtain another vector. In four dimensions, repeating the above
would give a two form, in five dimensions a three form and so on. For completeness we
also show

*% (dr Ndy) = *dz
=iy, * (dx Ndy N dz) (5.40)
=dx Ndy
which gives the same as applying directly.

Lastly, we note that there exists a definition of some familiar operators in this formalism
that allows us to apply them in any number of dimensions. For some function f € F(M)
and vector V € T,M

grad(f) = df
div(V) = «dV (5.41)
curl(V) =+ 1dx V

As an exercise, try to relate these to the usual divergence, gradient and curl operators
in three dimensions:
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(5.42)

5.4 Curvature and Torsion

We were introduced to the ideas of connections, curvature and torsion in a previous
chapter. In light of everything we have just covered in this chapter, one may well ask how
it all applies to those ideas. To how this changes let’s first consider a connection V and
its action on a non-coordinate basis {e,} (and its corresponding dual)

Ve e, =176 =w,(e)e, (5.43)

where we have introduced a set of m? one forms {w”,} called connection one-forms

related to the Christoffel symbols by either I'7, e, = w7, (e, )e, = i, (W7 ,)e, or I, =
w”,. We can define the curvature two-form

1
Rag = éRa/B,ygeﬂy VAN 66 (544)
using the Riemann curvature tensor and the torsion two form
«a 1 «a é
T = §T L6€7 Ne (5.45)

from the torsion tensor. These satisfy Cartan’s structure equations

de® + « A B — T
© TRBAC (5.46)
dwo‘ﬁ + wa7 A\ aﬂg = Raﬁ

Further, if our connection is Levi-Civita (that is torsion free and Vg = 0), we can find
the connection one-forms from our basis using

1
Wy = §(ieudeu — e, dey + €qle, e, de”) (5.47)

Once again, let’s take an example: We look at S? with the metric

ds? = d @ df + sin®(0)d¢ ® do. (5.48)

We already demonstrated in a previous example that the basis is given by
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el =df e =sin(f)de (5.49)
with the dual basis

1

=0 = ———0j. )
e1=0p € sin(0) % (5.50)
So now we can calculate the nonzero connection one-forms as
Wiy = —way = — cot(f)e? = cos(6)de. (5.51)

Since we are working with the Levi-Civita connection to obtain this expression, we know
that the right hand side of the first of Cartan’s structure equations must be zero. Substi-
tuting the above confirms the same for the left hand side:

de! +wly Ne? =0,

5.52
de® + w?; Ae' = cot(f)e' Ae? + cot(f)e? Aet = 0. (5:52)

Meanwhile, the second structure equation can be solved for the curvature two form to
give

R12 = —R21 = —61 VAN 62 (553)

There are two things to note about this result. Firstly, it is frame independent. Since
the basis e can be identified with the polar basis in any way (so the great circle section
connecting the poles can be chosen to lie anywhere) the above answer is valid in all frames.
Secondly, if you have ever gone through the rigmarole of calculating the curvature by
using the Christoffel symbols, it is hopefully clear that this way is considerably shorter
(Christoffel symbols have %(m? + m) components while the connection one-forms have

2
2(m? —m)). This is a point we are going to illustrate further in the next section.

5.5 Electromagnetism and Einstein’s Equations

An extremely useful application lies in electromagnetism. Expressed in conventional
vector calculus, Maxwells equations (in differential form) are
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V-E=p,

V.B=0,
VXE:J%, (5.54)
E
B = —
VxB=J+50

where E and B are the electric and magnetic fields respectively, p is the charge density
and J the current density. These are related to the vector potential A by

B A
ot (5.55)
B=VxA.

As you might recall, the operators used here are not suited to general relativity owing to
them being defined only in three dimensions. Using the contents of this section however,
we are in a position to recast these in a general and coordinate independent form. Now,
we treat A as a one-form. The Maxwell two-form is obtained by

F = dA. (5.56)

Maxwell’s equations are now cast in a much more compact formﬂ

dF = 0,

5.57
dxF = j, ( )

where j is the current three form. As an exercise, take this R (flat Minkowski space)
and by expanding the Maxwell two-form as

1
F = §Fw,dx“/\dx” = Fydx ANdt+EydyNdt+ E.dz Ndt+ B,dv Ndy — Bydx Adz+ Bydy Ndz

(5.58)
and the current three form

* j = pdt + jydx + j,dy + j.dz (5.59)

try to obtain the Maxwell equation in ([5.55)). We now turn to Einstein’s equations, how
are they to be recast in this form? Take first the contraction

It has been said that the progress of physics can be tracked through the ever increasing compactifi-
cation of Maxwell’s equations.
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PM = Rau<€alpha) = iﬁalphaRa# (560)
called the Ricci one-form. This is related to the Ricci tensor by
Ric = P, ® . (5.61)
We then further consider the Einstein three-form

G, = Rop Ax(e N’ Ney), (5.62)

which we relate back to the traditional Einstein tensor by

1
Ein = _§*G“®€M' (5.63)
If we then define the curvature scalar by

P = iaic, R 5, (5.64)

we can recast this in the more familiar form (try as an exercise)

1
Ein = Ric — 5739. (5.65)

We are, however, not obliged to work in this frame and can in fact write Einstein’s
equations as

G, = 871y, (5.66)

where 7, is the stress-energy-momentum three-form (SEM three-form). A common
example, drawing on what we covered above, is the SEM three-form for the electromag-
netic field

1
M = 3 (inF A+F = F Nig x F). (5.67)

Or, for a scalar field satisfying the Klein-Gordon equation
dxdp —m?p+1=0, (5.68)
it is

S _
T, =

(igndp A xdp — d A g + dp) — %mQQSQ . (5.69)

N | —
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Chapter 6

Topological defects on condensed
matter

Differently from particle physics, which tries to understand the matter looking for its
fundamental constituent, condensed matter physics tries to explain it through the emer-
gent behavior resulted from the interaction of zillions of electrons, atoms and molecules.
To accomplish this, it is necessary to look for the variables and degrees of freedom most
important. These variables are often brought together in the so called order parameter,
which is a (scalar, vector or tensor) field ¢ : X — M that maps points from the physical
space X into the abstract space M, known as order parameter space. The space M is
defined as the space in which the parameter 1 is varied without changing the energy of
the system. It is for this reason that this space is also called degeneracy space, since all
of the points in this space have the same energy.

Let’s see some examples to better illustrate this idea. The order parameter of a bidi-
mensional ferromagnetic material, for instance, is given by the vector field possessing
constant magnitude that describes the spins direction in the material. The degeneracy
space is then a circle whose points correspond to a direction of the vector field. If & and
© are orthonormal vectors on the plane, the order parameter can be given by

f(r) = wcos ¢(T) + 0sin ().
The same order parameter space describes the superfluid helium-4, in which the order
parameter is the complex scalar field with constant magnitude ¢, but with arbitrary
phase ¢(7)
() = o exp (ip(7)).
In this case the degeneracy space can be thought as a unit circle in the complex plane.
Another interesting example is the nematic liquid crystal. It is one of the phases of a
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liquid crystal whose molecules have directional symmetry. This means the molecules are
aligned to a vector field N, called director. Considering bidimensional nematics, the order
parameter is the director vector N itself, which takes values on the space S*. However,
the director vector also has inversion symmetry; this means that N and —IN represent the
same physical state. Therefore, the topological space which describes the nematics phase
states is the projective line RP?', that is, the space obtained by identifying the points
p € S* with their respect antipodes (Figure .

Pf

P

Figure 6.1: Representation of the manifold RP' such that the points P and P’ are
identified. Figure taken from http://ieeexplore.ieee.org/ieee_pilot/articles/
06/ttg2009061457/article.html.

When the space M is degenerated, i.e., formed by only one point, we say % (and
therefore the material itself) is homogeneous. Nonetheless, the field ¢ (r) in general varies
point to point and there are even regions in the material where v is not defined at all.
These singular regions are the defects. If this defect can be removed by a continuous
transformation of the order parameter 1, such that the field configuration be transformed
into a configuration locally homogeneous, we say the defect is topologically unstable. On
the other hand, if the defect cannot be eliminated by continuous transformations on the
order parameter, we say the defect is topologically stable, or simply that it is a topological
defect. The topological defects can be points (no dimension), lines (1 dimension) or
surfaces (2 dimensions). From now on, whenever we say defect is to be understood
topological defect, unless we explicitly state otherwise.

Let’s suppose that the topological space X is filled with a condensed matter system
to be studied. Suppose also that exists a topological defect in this media. By simplicity,
let’s say that this defect is a point defect. Draw a loop « around the defect in X (Figure
6.2). Through the order parameter 1, the loop « is mapped into a loop f = ¥ o v in
M. Tt is from the loops in M, more precisely from the fundamental group of M, that
we investigate the topology of M and, consequently, classify the topological defects in
X. If M has holes or offer restrictions on the deformation of an arbitrary loop 3, X has
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defects. In other words, the space X might have topological defects whenever there exists
a non-trivial homotopy class in M. On the other hand, if every loop is homeotopic to
a constant loop ¢,, then the physical system in X can be continuously deformed into a
defectless configuration. Hence, for each non-trivial homotopy class of M we associate a
topological defect. Consequently, the fundamental group gives us enough information for
a topological classification of the defects in condensed matter systems.

Figure 6.2: Loop around a point defect in an ordered media (left) and the respective loop
mapped into the degeneracy space (right). Figure taken from |[C14].

Consider as an example point defects in a bidimensional nematic liquid crystal. Since
its degeneracy space is M = RP', its fundamental group is 7 (RP') = Z (see Section
2.3). Therefore we can label the topological defects of a nematic liquid crystal by integer
numbers.

On the other hand, if we consider line defects in a three-dimensional nematic liquid
crystal, this situation changes drastically. The degeneracy space becomes RP?, which
is the analogous of RP! in three dimensions (Figure . Its fundamental group is
71 (RP?) 2 Zy and, hence, there is only one configuration with topological defect because
the other one can be continuously deformed into a free-defect configuration.

This shows that the topological classification of defects is dependent on the dimension
of the underlying physical system. In fact, to alter the dimension of a physical system also
alters the dimension of the degeneracy space M, which can make a very big difference
in its topology. This can be easily seen considering the topologies of S and S? as an
example. Make a loop in S' and try to shrink it into a point (Figure . Repeat this
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P

Figure 6.3: Representation of the manifold RP? whose points P and P’ are iden-
tified. Figure taken from http://ieeexplore.ieee.org/ieee_pilot/articles/06/
ttg2009061457/article.html.

procedure for S?. The extra dimension in S? enable us to shrink every loop into a single

+1 © ©+3
(a)

point.

Figure 6.4: Difference in the topology of (a) S* and (b) S?. In S' it is impossible to shrink
loops into a point. Figures taken from http://en.wikipedia.org/wiki/Homotopy_
groups_of_spheres|

Obtaining the degeneracy space in general is a complicate and delicate task. This
involves the concept of symmetric spaces that we have not introduced and, therefore, we
will not describe this procedure in detail; the interested reader may consult , for
more information. Although the technical proof is quite difficult, the idea is very simple
and is closely related to the one used to build Lagrangians in particle physics from known
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symmetries. The general rule just says that the degeneracy space of an ordered media is
given by the factor group between the total symmetry group G of the energy functional
(group of disordered states) by the subgroup H (group of ordered states), whose order
parameter is invariant under the subgroup actions. Therefore, in symbols, the degeneracy
space is simply given by G/H.

As an example, let’s take a look at the bidimensional smectics liquid crystal. The smec-
tics molecules have the same symmetries as the nematics, with the addition of a position
symmetry, which forces the molecules to organize in layers (Figure m In this case, the

WW

Figure 6.5: Illustration of a smectic liquid crystal. The red rods represent the molecules.

group G can be chosen as the Euclidian group F, that is, the group of all translations and
rotations in the plane. Observe in Figure that the smectics have continuous symme-
try along the layers and discrete symmetry in the direction of N. Moreover, due to the
symmetry of the molecules (N = —N), smectics also have rotation symmetry of order 2
(group C5), i.e., they are invariant under rotations of 7 around the axis normal to the
plane which the molecules belong. Hence, the symmetry group of the ordered states is

H =R XxZ)xCy,

where X and x are the direct and semi-direct productEl, respectively. It is easy to see
(but not so easy to prove) that the factor group E/H is the Klein bottle (Figure [6.6).

1See \ for the definitions and for more details of groups in physics.
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In fact, to perform a rotation of 7 followed by a translation of d is equivalent to perform
a translation of —J (convince yourself of this by looking at Figure . This makes the
degeneracy space to take a twisted form and the only way for this to be true is a Klein
bottle degeneracy space, whose fundamentral group is

m(BE/H)=Z % L. (6.1)

Therefore, topological defects in smectics liquid crystal are described by a ordered pair
of integer numbers (b, k), where b characterizes defects in the molecules direction (called
disclination) and & in the molecules position (called dislocation).

Figure 6.6: Klein bottle immersed in R?.

This example of smectics shows that the application of the homotopy theory for the
classification of topological defects in materials with translational order has limitations.
Part of the problem is that this theory predicts the existence of defects that are not
present in the physical system. In fact, it was shown in that smectics cannot have
disclinations with charge b greater than +1 (see next section), but charges b > +1 are
still predicted by the theory.

6.1 Topological charges

As we have seen in the last section, there are some cases where the defects can be
totally described by an integer number. This is always the case when the fundamental
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group is isomorphic to the additive group of integers. Defects with charges include vortex
in superconductors, dislocations in crystals and point defects in isotropic ferromagnetic,
nematics and smectics materials. Therefore, analogously to the electric charge, some
defects have topological charges. Mathematically, the topological charge of a defect is
the degree of a map or the Poincaré-Hopf index, which is the number of turns that the
order parameter ¥ (r) performs when r runs a closed loop around the defect. This way
the charges can be expressed as functionals of the order parameter and, for this reason,
are called analytical topological invariants.

In the nematics, for example, we have seen that the order parameter is described by
the vector field N. The topological charge is then defined by |A2,A3]

_ 1 _ 1 Jfdo,. _ o)~ ¢
= %<(N’V) o7 f; dsds N 2 ’

where V is any unit vector field, ¢ is the angle between N and V and 7 is a curve defined
on the range a < s < bsuch that y(a) = v(b). Since the nematics molecules are symmetric
by the inversion N — —N, the possible values for this topological charge are semi-integers

(Figure [6.7):

Z 1 3
€2 —10,4-,4+1,+5, ...
me 5 ={0%3 3ot
However, the set Z is isomorphic to the semi-integers %, because for each n € Z we
can assign f(n) = § whose inverse is f~*(n) = 2n. Consequently, an isomorphism also

exists between the bidimensional nematics fundamental group 7 (RP'), which classifies
the defect, and the semi-integers % that label the topological charge. Symbolically we
write

Z
m(RP') = 3

This shows that we can assign to each topological defect (that is, to each homotopy class)
a topological charge and, hence, we can classify them through these charges. Therefore,
defects of different topological charges cannot be transformed into each other continuously.
In addition, since the group 7 (RP") is isomorphic to the additive group of semi-integers,
two defects of charges m; and ms can be summed, producing a single defect of charge
m = my + my. Consequently, defects of opposite sign and same modulus can anniquilate
themselves producing a configuration with no defects.

This also occurs partly in the smectics because they inherit the director vector from
the nematics phase. However, in other materials like the ferromagnetic ones which do not
have that inversion symmetry (spins in opposite directions represent different physical
states), only integer values for the topological charge m are allowed, since configurations
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s=-1/2

Figure 6.7: Configuration of the nematics molecules in the presence of topological defects
of different charges s. Figure taken from http://www.doitpoms.ac.uk/tlplib/liquid_
crystals/printall.php.

with semi-integer charges would cost infinite energy due to the discontinuity in the field
of spins (see Figure [6.8).

This chapter was intended to give a brief introduction to the subject and to try to show
what has been done currently considering applications of topology, or more precisely of
homotopy theory, in physics. It was not intended to give a deep description of the physics
of condensed matter systems though and the reader that feels uncomfortable with such
physical concepts is encourage to take a look in the rich literature. Some good references
on condensed matter include [B11,C18-C20]. Topological defects in these systems can be
found in [C14,[C21][C22]. Clearly there are a lot of other places besides topological defects
where topology could be useful and others where it has already proved its usefulness,
including geometrical phases, quantum anomalies and topological insulators. Outside
condensed matter, topology has also been used to study quantum field theories (specially
topological quantum field theories) and topological questions in gravity. As one can
imagine, the literature is vast and we hope the reader has enjoyed the present course and
could use it as a bridge to others more profound and advanced.
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Figure 6.8: Spins configuration (represented in blue) if there were a point defect of charge
—i—% in the origin. The discontinuity (represented in red) extends along the whole positive
x axis. In order to this configuration to exist, would be necessary an infinite amount of
energy.
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